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The Feasibility of Automated Topic Analysis: 
An Empirical Evaluation of Deep Learning 

Techniques Applied to Skew-Distributed 
Chinese Text Classificationψ

Yuen-Hsien Tseng

Abstract
Text classification (TC) is the task of assigning predefined categories (or labels) 
to texts for information organization, knowledge management, and many 
other applications.  Normally the categories are topical in library science 
applications, although they can be any labels suitable for an application.  
Thus, TC often requires topical analysis which relies on human knowledge.  
However, in recent decades, machine learning (ML) techniques have been 
applied to TC for efficiency, as long as a sufficient number of training texts 
are available for each category.  Nevertheless, in real-world cases, the number 
of texts (documents) for each category is often highly skewed for a certain 
TC task.  This leads to the problem of predicting labels for small categories, 
which is viable for humans but challenging for machines.  Deep learning (DL) 
is an emerging class of machine learning (ML) which was inspired by human 
neural networks.  This study aims to evaluate whether DL techniques are 
feasible for the mentioned problem by comparing the performance of four off-
the-shelf DL methods (CNN, RCNN, fastText, and BERT) with four traditional 
ML techniques on five skew-distributed datasets (four in Chinese, and one 
in English for comparison).  Our results show that BERT is effective for 
moderately skewed datasets, but is still not feasible for highly skewed TC tasks.  
The other three DL-aware methods (CNN, RCNN, fastText) do not show any 
advantage in comparison with traditional methods such as SVM for the five TC 
tasks, although they captured extra language knowledge in the pretrained word 
representation.  To facilitate future study, all of the Chinese datasets used in 
this study have been released publicly, together with all of the adapted machine 
learning and evaluation source codes for verification and for further study at 
https://github.com/SamTseng/Chinese_Skewed_TxtClf.
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Introduction
Deep learning (DL) is a class of machine learning (ML) algorithms that 

use multiple layers of connected nonlinear processing units inspired by neural 
networks in the human brain (LeCun et al., 2015).  The characteristics that 
distinguish DL from traditional ML is that DL techniques can automatically learn 
the knowledge representation features, either spatial or temporal, needed for a 
task.  In recent years, DL techniques have been successfully applied to such areas 
as speech recognition, computer vision (Russakovsky et al., 2015), and natural 
language processing (Devlin et al., 2019).  The success of DL in end-to-end 
applications can be attributed to the breakthrough of learning algorithms, feature 
representation (e.g., word embedding [Mikolov, Sutskever, et al., 2013]), and 
network architectures (e.g., convolutional neural networks, or CNN [Alex et al., 
2012], recurrent neural networks, or RNN [Hochreiter & Schmidhuber, 1997], and 
transformers [Vaswani et al., 2017]).  Many fields have attempted to apply DL to 
better deal with traditional tasks or to innovate new applications.

Text classification (TC) is the task of assigning predefined labels (or 
categories) to texts or documents for data analysis/mining, information browsing/
searching, knowledge organization/management, and many others.  A number of 
studies have applied deep learning to text classification (Chen & Lee, 2017; Lai 
et al., 2015; X. Zhang et al., 2015).  Most studies have evaluated their approaches 
on datasets with relatively balanced document distribution, that is, the number of 
documents for each category is fairly even (X. Zhang et al., 2015).  However, in 
real-world cases, texts often follow Zipf’s law: the distribution of the frequencies 
of terms is highly skewed, as is the distribution of the documents to the categories 
to which they belong.  In other words, most documents belong to a few categories, 
and most categories have very few documents.  A good machine classifier should 
correctly predict a document’s category not just for a few large categories, but 
also for many more small categories with limited training data in the same TC 
task.

The problem of correct prediction for small categories is challenging and is 
a long-standing issue in TC study.  As DL has been successfully applied to many 
tasks, even better than humans in some cases, the question that follows is: can the 
emerging DL techniques solve this problem better than traditional methods to the 
extent that automated topic analysis with minimal human involvement becomes 
feasible.  To answer this question, in this study we compared the performance of 
four off-the-shelf DL methods with four traditional machine learning techniques 
on five skew-distributed datasets.

In library science, this is an important question to answer, as information 
organization and topic analysis is one of the main technical services in library/http://joemls.tku.edu.tw
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institute practices.  In this age of the resurgence of Artificial Intelligence (AI), 
whether the recent techniques are mature enough to augment human power to an 
unprecedented level is worth examining and exploring.  Therefore, this study is 
not technique-oriented (i.e., it does not aim to devise more advanced methods for 
further performance improvement), but rather, it examines existing tools to test 
their capability for immediate application.

The rest of the paper is organized as follows: The next section briefly 
reviews related work to further motivate this study.  Section 3 clarifies the 
research questions and possible contributions of this work.  Section 4 introduces 
the machine learning methods for performance comparison.  In Section 5, the 
five real-world corpora for text classification are described.  Section 6 details the 
experiment results.  The conclusions are summarized in the final section.

Related Work
Automated text classification has been studied for decades.  This section 

reviews some representative studies based on both the traditional ML and the 
DL methods.  Because there is a huge body of literature on automated text 
classification, including research issues on document representation, feature 
selection, classifier construction, parameter tuning, evaluation metrics, and various 
applications (e.g., classification by topic, source, language, emotion, spam, etc.), 
our emphasis is only on those studies which experimented on topical classification 
for skewed datasets.  

In the late 1990s, various text classifiers were proposed.  Many different 
studies experimented on datasets of different variations, leading to slightly 
inconsistent conclusions.  Y. Yang and Liu (1999), therefore, compared the 
effectiveness of five classifiers, namely SVM (Support Vector Machine), kNN 
(k-Nearest Neighbors), Linear Least Square Fit (LLSF), Neural Networks (NNet), 
and Naïve Bayes (NB), based on the real-world (skew-distributed) Reuters-21578 
dataset (described later), with the results verified by a statistical significance test.  
Their experiments showed that SVM, kNN, and LLSF significantly outperformed 
NNet and NB when the number of positive training instances per category was 
small (less than 10), and that all the methods performed comparably when the 
categories were sufficiently common (over 300 instances).  Therefore, a genuinely 
effective text classifier should perform well for categories no matter whether there 
are sufficient positive examples or not.

Lewis et al. (2004) extensively described a new large Reuters dataset called 
RCV1-v2 for text categorization research.  The RCV1-v2 dataset1 contains 

1	RCV1-v2 is available at: http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_
rcv1v2_README.htm, accessed on 2020/02/18. http://joemls.tku.edu.tw
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804,414 documents which were split into 23,149 training documents and 
781,265 test documents (this split is called the LYRL2004 split).  There are in 
total 103 topic categories, the distributions of which are extremely skewed: the 
largest category has 374,316 texts while the smallest has only five.  The authors 
benchmarked the dataset with SVM, kNN, and Rocchio classifiers and confirmed 
the findings of past studies: SVM is dominant, kNN is competitive, and the 
Rocchio algorithm is only plausible.  The best SVM performance was 81.6% for 
MicroF and 60.7% for MacroF (these metrics will be described later).  It is noted 
that the MacroF value is lower than the MicroF value, meaning that many small 
categories were not classified well, compared to the large categories.  The authors 
did not particularly study the skewed category problem, that is, they did not try to 
improve the MacroF for this dataset.

The review paper of Sebastiani (2002) summarized the TC studies around 
2000.  He pointed out that the evaluation of text classifiers is typically conducted 
experimentally, rather than analytically, due to its subjective characteristics.  
Therefore, the more datasets (with diverse domains) that are used in TC 
experiments, the more reliable and consistent the insights drawn from the 
experiments will be.  This can be observed when sentiment analysis was studied, 
beginning in 2002 (Pang et al., 2002; Turney, 2002), an increasing number of 
datasets for sentiment analysis (most from Twitter) were made publicly available.  
There were at least nine by 2013, as described by Saif et al. (2013).  However, 
these sentiment datasets have few categories, normally only three: positive, 
negative, and neutral.  Even with so few categories, Pang et al. (2002) still stated 
that “studying the effect of skewed class distributions was out of the scope of 
this study,” which confirms that skew-distributed TC is another issue that needs 
to be addressed in addition to those mentioned earlier (such as feature extraction, 
parameter tuning, etc.).

In addition to Reuters datasets, there are only a few commonly used datasets 
for topic-based TC study.  Sebastiani (2002) introduced only three more datasets: 
one is proprietary (the AP collection)2, and the other two are publicly available.  
These two public datasets are described as follows: 1. OHSUMED3 is a set of 
348,566 bibliographic records from 270 medical journals over a 5-year period 
(1987-1991) from the online medical information database MEDLINE.  The 
available fields are title, abstract, MeSH indexing terms, author, source, and 
publication type.  The categories are the MeSH terms or the clusters of MeSH 
terms under certain diseases, depending on how researchers use this dataset 

2 Details of the AP collection can be found at: http://www.daviddlewis.com/resources/testcollections/
trecap/, accessed on 2020/02/18.

3 OHSUMED is available at: https://trec.nist.gov/data/t9_filtering.html, accessed on 2020/02/18.http://joemls.tku.edu.tw
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(Joachims, 1998).  2. The 20 newsgroups (20NG)4 contains messages posted to 20 
Usenet newsgroups.  Each group has about 1,000 texts and thus there are a total 
of approximately 20,000 texts, which make it a balanced dataset.  Considering 
the characteristics of these datasets, it can be seen that there are insufficient real-
world datasets for experiments on skew-distributed TC tasks.

With the resurgence of AI research momentum (more data and more 
computation power have become easily accessible), various DL techniques 
equipped with pre-trained word embedding, sequence recognition, and 
attention mechanisms for semantic understanding have been proposed for better 
performance in various TC-related tasks.  Example DL techniques include CNN, 
RCNN, fastText, and BERT, as described below.

Johnson and Zhang (2015) proposed Convolutional Neural Networks (CNN) 
for sentiment prediction of movie reviews (dataset name: IMDB), Amazon’s 
electronic product reviews (dataset name: Elec), and for topical classification of 
news (dataset name: RCV1-v2).  They reported the error rates (number of texts 
with incorrect category prediction divided by the total number of texts) for these 
three datasets.  Additionally, they reported MicroF and MacroF measures for 
RCV1-v2 with 84.0% and 64.8%, respectively.  This performance is obviously 
better than that of Lewis et al.’s (2004) results mentioned above.  Therefore, CNN 
is a strong classifier that is worth testing on more topic-based TC tasks in different 
domains.

Lai et al. (2015) proposed Recurrent Convolutional Neural Networks (RCNN) 
and experimented with this new approach on four datasets, namely, 20NG for 
topical discussion group classification, the Fudan set for Chinese TC with 20 
topical categories, the ACL Anthology Network for the prediction of five native 
languages of the authors of scientific papers, and the Stanford Sentiment Treebank 
for predicting five sentiment levels for movie reviews.  Although they do not 
report the skewedness of these datasets, their use of accuracy (number of correctly 
classified texts divided by number of all texts) as the main performance metric (for 
the last three datasets) suggests that the datasets are balanced (otherwise the use 
of accuracy would be an improper measure).  They did use MacroF for the 20NG, 
which is a balanced dataset.  Therefore, how well RCNN will perform on skewed 
datasets is unknown.

Another approach, fastText (Joulin et al., 2016) reported accuracy on eight 
sentiment analysis datasets and reported precision of 1 (denoted as Prec@1, i.e., 
the number of correct predictions in the first place when ranking the tags) on a 
huge tag prediction dataset called YFCC100M where there are 312,116 unique 

4	20NG is available at: http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html, accessed 
on 2020/02/18. http://joemls.tku.edu.tw
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image tags for prediction (each tag occurs more than 100 times) based on the 
image titles and captions with 91,188,648 training examples and 543,424 testing 
examples.  It was found that fastText performed better or was often on a par with 
various DL classifiers in terms of accuracy, and many orders of magnitude faster 
for training and evaluation.  The accuracy or Prec@1 did not reveal how well 
fastText could boost the performance of low-frequency categories.

BERT (Devlin et al., 2019) obtained state-of-the-art results on 11 natural 
language processing tasks, most of which were related to sentence pair 
inferencing (the task names are: QQP, QNLI, STS-B, MRPC, and WNLI) or 
entailment prediction (MNLI, RTE, and SWAG).  Two tasks were to predict a 
single sentence’s sentiment (SST-2) or linguistic acceptability (CoLA), and two 
were about a question answering test (SQuAD v1.1 and SQuAD v2.0).  In other 
words, the 11 tasks consisted of a variety of semantic classification tasks, but none 
were related to topical classification which also needs semantic understanding for 
better text classification.

To compare the performance of different classifiers, Sebastiani (2002) also 
pointed out that different sets of experiments may be used for cross-classifier 
comparison only if the experiments have been performed: 1. on exactly the 
same collection (i.e., the same documents and same categories); 2. with the 
same “split” between training set and test set; and 3. with the same evaluation 
measure.  If these protocols are not followed, it is likely that different authors 
in their individual papers may report incomparable results because the classifier 
implementation details are often insufficient to reproduce the same result (e.g., 
how exactly features are selected, stop words are used, stemming is performed, 
parameters are chosen, etc.).  Therefore, to claim that a new technique performs 
better than previous ones whether on new or old datasets, three options are viable: 1. 
reporting an obvious improvement on the same datasets over previous techniques 
without the need for statistical significance tests (due to the lack of previous 
example-wise results); 2. cooperating with the authors of previous techniques 
to use their exact techniques on the same datasets for comparison; and 3. re-
implementing previous techniques to the extent that it approximates the previous 
performance on the same datasets, and then comparing the performance of the re-
implementation with that of the new technique.  Option 1 has been widely used; 
one example is the study by Johnson and Zhang (2015) mentioned above.  Option 
2 is relatively rare, but it encourages research cooperation, such as the study by 
Tseng and Teahan (2004).  Option 3 is less reliable, as pointed out by Sebastiani 
(2002), but it is somewhat inevitable when novel techniques or new datasets are 
introduced.  Option 3 was used in X. Zhang’s (2015) study, in which they re-
implemented a multinomial logistic regression classifier, a word-based CNN, and http://joemls.tku.edu.tw
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an RNN based on Long-Short Term Memory (LSTM; Hochreiter & Schmidhuber, 
1997) to compare their proposed character-level CNN.  In addition, they collected 
eight large-scale balanced datasets for their experiments, ranging from hundreds 
of thousands to several millions of samples.  In our work, Option 3 was used, 
because four more real-world Chinese datasets were introduced.

To sum up this brief review, four important notes can be re-stated:
1.	Skew-distributed TC is an issue worth studying.
2.	A genuine effective text classifier should perform well on all categories,

no matter whether there are sufficient positive examples or not.
3.	Because of the empirical nature of TC study, more publicly available real-

world datasets for experiments on skew-distributed TC tasks are needed,
especially for traditional Chinese.

4.	When comparing classifiers it should be borne in mind that the datasets,
preprocessing, and parameters should be transparent (detailed enough)
for future comparison or verification to facilitate the advancement of TC
research.

Research Questions
Based on the above introduction and review, we clarify our research 

questions as follows:
RQ1.	Do the latest deep learning techniques perform better than traditional 

machine learning methods in real-world, topic-based, and skew-
distributed text classification tasks?

RQ2.	Are there any real-world datasets for which certain deep learning techniques 
exhibit better performance for skewed category distribution, and in what 
context?

In the process of pursuing empirical answers to the above questions, the 
possible contributions of this work are to:

1.	Introduce more real-world datasets, especially in Chinese, for text
classification research, and to release the datasets and TC codes publicly
for future comparative studies.

2.	Provide empirical reports on how well deep learning techniques perform
comparatively over these datasets, and especially their effectiveness
versus their efficiency, in order to suggest a guideline and to reveal the
feasibility of the current deep learning techniques for TC practitioners and
researchers.

Machine Learning for Automated Text Categorization
The ML application to text classification follows these pipeline steps: 1. http://joemls.tku.edu.tw
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dataset preparation, 2. feature extraction, 3. model training, and 4. performance 
evaluation.  This section introduces the second and third steps, leaving steps 1 and 
4 to the next sections.

For ease of comparison, we adapted the Python code from https://www.
analyticsvidhya.com/blog/2018/04/a-comprehensive-guide-to-understand-and-
implement-text-classification-in-python/ for the traditional machine learning 
methods: Naïve Bayes (NB), Support Vector Machine (SVM), Random Forest 
(RF), and single hidden-layer neural networks (NN), and also for the deep 
learning methods: Convolutional Neural Networks (CNN; Johnson & Zhang, 
2015) and Recurrent Convolutional Neural Networks (RCNN; Lai et al., 2015).  
For fastText (Joulin et al., 2016), we used the open-source library released by 
Facebook’s AI Research (FAIR) to learn text representations and text classifiers.  
For BERT (Bidirectional Encoder Representations from Transformers; Devlin 
et al., 2019), which is effective for a wide array of natural language processing 
tasks, we used the publicly available text classification code example released by 
Google Research in November 2018.  All codes were modified for Chinese and 
enhanced for our experimental flow and analysis.

Feature Extraction
The texts in each dataset were first cleaned and standardized by tokenization, 

segmentation, lowercasing, and stop-word removal for all the machine classifiers 
other than BERT (BERT only needs original text input and lower-case English 
words).  Each text was then transformed into a feature vector with each element 
representing a term in the dataset.  The term’s value can be the term’s occurring 
frequency (term frequency, TF) in a text, or the normalized TF multiplied 
by the logarithm of the inverse document frequency (IDF) of the term in the 
whole dataset (TFxIDF; Salton, 1989).  The term here can be a normal word, N 
consecutive words, or N consecutive characters.  With these different values for a 
term and different ways to denote a term, there are four feature vectors (or feature 
sets) commonly used: 1. Word Count: the term represents a normal word and its 
value is the word’s TF; 2. TFxIDF: the term is a normal word and its value is the 
word’s TFxIDF; 3. Word N-grams: the term is an N consecutive word in a text and 
its value is the term’s TFxIDF; and 4. Char N-gram: the term is an N consecutive 
character in a text and its value is the term’s TFxIDF.

In contrast to the above large sparse feature vectors (e.g., larger than 10,000 
dimensions) where semantically similar terms may have no intersection in their 
vector representation, Word2Vec word embedding (Mikolov, Chen, et al., 2013) 
is a special way to transform a word into a relatively small dense vector (e.g., 
300 dimensions), where semantically similar terms are also similar in their 
embedding vectors (e.g., similar cosine similarity between the corresponding http://joemls.tku.edu.tw
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word embedding vectors).  Word embeddings can be directly trained using the 
input corpus or can be obtained from pre-trained word embeddings (such as those 
provided by Google’s word embedding vectors or Facebook’s fastText trained 
with very large text corpora) followed by fine-tuned training from the input corpus 
for text classification.

Machine Learning Models
Four traditional ML techniques were used, namely Naïve Bayes (NB), 

Support Vector Machine (SVM), Random Forest (RF), and the single hidden-layer 
neural network (NN).  These are all mature ML methods widely used before the 
DL methods were introduced.  Their technical details can be found on the Web (e.g., 
Wikipedia) or in related textbooks (Witten et al., 2011).

For the DL techniques (please refer to the above-mentioned URL, from 
which we have fixed some bugs and added some code for dealing with Chinese), 
the first one is based on Convolutional Neural Networks (CNN), where a 
pretrained Word2Vec word embedding with trainable weights for the classification 
task is the first layer.  This is followed by a 1-d convolution layer to convolve 
the embedding vectors to extract local contextual information of the input word 
embeddings.  This becomes the input to a max pooling layer to summarize 
the local contextual information.  A dense hidden layer is followed to map the 
summarized information to a category prediction layer, which uses softmax as 
its activation function and is thus called the softmax output layer.  In sum, this 
CNN deep neural network has 5 layers.  The pretrained Word2Vec files were 
downloaded from https://fasttext.cc/docs/en/pretrained-vectors.html, which was 
released by Facebook and is one of many Word2Vec files freely available on the 
Web.

For the second DL technique, Recurrent Convolutional Neural Networks 
(RCNN), the first layer is the same pretrained word embedding layer with 
trainable weights for the application task, which is followed by a 1-dimensional 
convolution layer.  The next layer is a bi-directional GRU (Gated Recurrent Unit) 
to further extract longer dependent information in the text, which is followed by 
another 1-dimensional convolution layer, a max pooling layer, and then a dense 
hidden layer.  The final output layer is a softmax layer.  In sum, this RCNN has 
six layers.

The third DL technique is fastText.  Although it may not be a full DL 
method, it combines some of the most successful concepts of natural language 
processing, such as word embedding and machine learning.  It uses a hierarchical 
classifier instead of a flat structure, in which categories are organized into a 
tree.  FastText exploits the fact that classes are imbalanced by using the Huffman 

http://joemls.tku.edu.tw
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algorithm to build the tree used to represent the categories.  The depth of the tree 
for very frequent categories is therefore less than that for infrequent categories, 
leading to further computational efficiency.

The Word2Vec word embedding vectors mentioned above have two 
deficiencies: 1. the homograph problem: a word with various different meanings 
has the same embedding vector, leading to incorrect meaning representation of 
a homographic word; 2. the Out-of-Vocabulary (OOV) problem: if a word in a 
text classification corpus does not belong to a pretrained Word2Vec vocabulary, 
the OOV word would have no correct embedding vector to use.  The emergence 
of the BERT technique is able to overcome these two deficiencies, by outputting 
different embedding vectors for a homographic word depending on its context 
and by learning the meaning of the sub-word representation of a word (which 
alleviates the OOV problem).  In addition, one of the major techniques used in 
BERT is the attention mechanism (Vaswani et al., 2017) which allows BERT 
to focus on the important words for the application task.  As a result, the pre-
trained BERT model can be fine-tuned with just one additional output layer to 
create state-of-the-art models for a wide range of tasks, such as text classification.  
However, due to its complexity using 12 layers of transformers with a total of 110 
million parameters for fine-tuning during training, the currently released BERT 
model takes as input a document with a maximum length of only 512 English 
words or 512 Chinese characters (no Chinese segmentation is needed).  Despite 
this limitation, the document length is mostly sufficient as one can often tell 
the topics of a document by looking at only the first few sentences.  We slightly 
modified the text classification Python code released by Google to accommodate 
our datasets for topic training and for prediction by BERT.

For all of the above classifiers, we adopted the default values as far as 
possible.  The training epoch was set to 20 (the classifier sees each of the training 
texts 20 times) for all the DL techniques except fastText.  With these settings, the 
classifiers achieved over 95% accuracy for classifying the training set at epoch 20.  
We believe that this training epoch number is large enough to obtain good results 
and to prevent the classifier from overfitting by restraining its training time.  For 
fastText, we followed the tutorial instructions and tried out various settings until 
we could not obtain better results.

The classifiers were tested and verified on a Chinese binary classification 
corpus (we call it the CnonC dataset).  Its text per document is merely a project 
title, and the corresponding labels are either Construction or Non-Construction.  
The training set has only 232 examples and the testing set has 100 examples.  The 
category distribution is balanced: half of the examples belong to Construction and 
the others belong to the Non-Construction category.  All the classifiers performed http://joemls.tku.edu.tw
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normally, with MicroF1 ranging from 0.87 to 0.93.  This verification process 
suggested that all of our eight classifiers were valid programs (without bugs) 
for the later experiments and that the training set did not need to contain a large 
number of examples to achieve high performance (the consistent characteristics 
between the training and testing set is more important than the number of training 
examples).  This CnonC corpus is also an ideal small dataset for early prototyping 
of the classifier design (either for choosing the parameters or architecture).

Datasets
In this study, five text datasets were used.  Four of them were in Chinese and 

one in English for comparison.  Their basic statistics are shown in Table 1.
Table 1   Basic Statistics of the Five Datasets

Dataset Train docs. Test docs. Categories Avg. chars./
words Diversity Divratio

%
WebDes_1686 1,190 496 26 75 9.4 36.30
News_914 644 270 12 502 5.1 42.32
Joke_3414 2,389 1,025 9 118 7.4 81.94
CTC_27320 19,266 8,054 81 800 17.4 21.78
Reuters_9130 6,561 2,569 52 134 3.9 7.57

Each of the five datasets was split into a training subset and a testing subset 
such that the testing subset contained 30% of the total documents for each 
category.  The number of classes in the dataset is shown in the Categories column.  
The average length of the texts for each dataset is shown in terms of the number 
of Chinese characters or English words.  The Diversity and DivRatio columns 
indicate the skewedness of the dataset.  Diversity was defined by Simpson (1949; 
and is also known as the Herfindahl–Hirschman Index, or HHI; Calkins, 1983; 
Hirschman, 1964) as:

HHI = si
2

i=1

n
∑

where si denotes the share of category i in a dataset (percentage of number of texts 
belonging to category i) and n is the total number of categories.  For example, 
suppose there are totally three (n = 3) categories with 70, 20, and 10 texts in a 
dataset, in each dataset, their shares would be 0.7, 0.2, and 0.1, respectively.  HHI 
is proportional to the average share, weighted by individual share.  Therefore, for 
this example, the HHI is 0.49 + 0.04 + 0.01 = 0.54.  As such, it ranges from 1/n to 
1.0.  Interestingly, the reciprocal of the index (e.g., 1/HHI), which corresponds to 
the Diversity column, indicates the “equivalent” number of dominant categories 
(Liston-Heyes & Pilkington, 2004).  For the example with HHI = 0.54, it means 
that there are equivalently only 1.85 (= 1/0.54) categories that are used to label 
the texts in the dataset.  Since each dataset has a different category number (n), http://joemls.tku.edu.tw
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we divide the Diversity index by the number of categories to yield the value in 
the DivRatio column to indicate the percentage of categories used to label the 
texts in the dataset.  This DivRatio is, in our view, a reasonable quantitative value 
to indicate the skewness of the categories, where a 100% DivRatio indicates that 
each category has an equal number of texts.

WebDes_1686: This dataset contains Chinese webpage descriptions from an 
internet portal.  It was used to evaluate machine classifiers before their deployment 
for daily use.  It contains 1,190 texts for training and 496 for testing, with a total 
of 1,686 texts; thus, it is named WebDes_1686.  This naming convention also 
applies to the datasets described below.  This dataset has an average of 75 Chinese 
characters (or English words) for each text.  It has 26 categories, but on average 
only 9.4 categories were used to label the 1,686 texts, which is equivalent to 
having 36.30% categories mostly used, while the other 63.70% of categories have 
relatively few texts.

News_914: This is a Chinese news dataset from the same portal mentioned 
above.  Hence, the purpose is the same: to seek assistance from machine learning 
to guide daily incoming news to desired categorical webpages for news browsing 
or subscription by the portal users.

Joke_3414: This dataset containing humorous texts was collected over the 
past 2 years from over 40 sources including 27 websites, 11 joke books, and three 
joke apps for possible use in humor generation applications.  A joke is humorous 
only when it is applied in a proper context.  To help decide the right context, 
the corpus was manually classified into nine categories by at least two people 
(all majoring in Library and Information Science).  Two annotators classified 
each joke independently based on the category definition.  When there was 
inconsistency (62 jokes had inconsistent categories), a third annotator helped label 
these jokes.  The majority of the categories among the three was then assigned to 
the joke.  The inter-rater agreement for the two major annotators had a Cohen’s 
kappa coefficient as high as 0.97.

CTC_27320: The source of this dataset was the news broadcasts of 
Mainland China’s radio stations between 1966 and 1982.  These broadcasts were 
transcribed manually and labeled by domain analysts.  The purpose of the labeling 
is document organization, browsing, and retrieval.  The validity of this Chinese 
corpus was verified by Tseng and Teahan (2004).

Reuters_9130: This English dataset contains Reuters newswires from 1987.  
It was originally collected and labeled by Carnegie Group, Inc. and Reuters, Ltd.  
during the course of developing the CONSTRUE text categorization system, and 
is publicly available at: http://www.daviddlewis.com/resources/testcollections/
reuters21578/. http://joemls.tku.edu.tw
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The original CTC and Reuters datasets are both multi-labeled (i.e., a text can 
belong to multiple categories), although most documents are single-labeled.  To 
exclude the effect of prediction uncertainty in this study, we removed the multi-
labeled documents, which reduced the number of categories from 82 to 81 and 
the number of total documents from 28,013 to 27,320 for the CTC_27320 dataset, 
and from 90 to 52 and 10,788 to 9,130 for Reuters_9130.  To distinguish the 
original datasets from those used in this study, we appended the number of used 
documents to the name of the dataset.

The number of texts for each category is depicted in Figures 1 to 5 to 
visually show their skewness.  As can be seen from the figures, the document 
distributions of the categories in all the datasets are skewed, with the last two 
being highly skewed (the small categories have only one or two documents 
compared to the largest categories with thousands of documents).

Evaluation Results
Two metrics were used for the performance comparison: MicroF1 and 

MacroF1.  For both metrics, a confusion matrix like the one shown in Table 2 was 
computed for each category, where each cell represents the number of documents 

Figure 1   Number of Documents for Each Category 
in the News_914 Dataset

Figure 2   Number of Documents for Each Category 
in the WebDes_1686 Datasethttp://joemls.tku.edu.tw
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Figure 3   Number of Documents for Each Category  
in the Joke_3414 Dataset

Figure 4   Number of Documents for Each Category  
in the CTC_27320 Dataset

Figure 5   Number of Documents for Each Category  
in the Reuters_9130 Dataset

http://joemls.tku.edu.tw
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in the corresponding case (TP, FP, FN, or TN).  The precision and recall were 
then calculated based on the matrix.  The F1 score is the harmonic average of the 
precision and recall.  The Micro- and Macro-averages were computed in different 
ways, and thus their interpretation differed.  A macro-average will compute 
the metric independently for each category and then take the average (hence 
weighting all categories equally), whereas a micro-average will aggregate the 
contributions of all categories to compute the average metric.

Table 2   The Confusion Matrix for a Category
For a category i Machine prediction as Yes Machine prediction as No

Human labels as Yes True Positive (TPi) False Negative (FNi)
Human labels as No False Positive (FPi) True Negative (TNi)

Below are the detailed calculating equations for the micro-precision and 
micro-recall:

MicroPre = 
TPii=1

n
∑
TPi + FPii=1

n
∑i=1

n
∑

MicroRec = 
TPii=1

n
∑
TPi + FNii=1

n
∑i=1

n
∑

assuming there are n categories.  MicroF1 is then calculated by the equation:

MicroF1 = 2×MicroPre×MicroRec
MicroPre+MicroRec

In contrast, the macro-precision and macro-recall are:

MicroPre = 
1
n

TPi
TPi +FPii=1

n

∑

MicroRec = 
1
n

TPi
TPi +FNii=1

n

∑

MacroF1 is then calculated by the equation:

MicroF1 = 2×MicroPre×MicroRec
MicroPre+MicroRec

Based on the above calculation, MicroF1 measures overall document 
classification effectiveness and thus reveals the effectiveness of a few major 
categories.  In contrast, MacroF1 takes each category’s effectiveness into 
consideration and thus reveals the effectiveness of most minor categories.  Table 3 
shows the performance figures for all the classifiers on the five datasets.

http://joemls.tku.edu.tw
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Table 3	 Performance of Various Classifiers With 
Different Features on Five Datasets

Dataset Models Features MicroF1 MacroF1 Time (seconds)
WebDes_1686 NB Word Count 0.8004 0.6129 0.01

SVM TFxIDF 0.8346 0.7160 0.07
RF Word Count 0.8044 0.6203 0.06
NN Word Count 0.8245 0.6856 5.15
CNN Word Embedding 0.7943 0.6124 8.91
RCNN Word Embedding 0.7883 0.6001 8.56
fastText Word Bi-gram 0.8024 0.6281 < 1
BERT 0.8730 0.7684 3,332.31

News_914 NB Word Count 0.7444 0.6244 0.01
SVM Char N-gram 0.7851 0.7388 0.16
RF TFxIDF 0.6111 0.3648 0.07
NN Char N-gram 0.8037 0.7400 3.98
CNN Word Embedding 0.6444 0.4231 27.69
RCNN Word Embedding 0.6518 0.4135 27.94
fastText Word Bi-gram 0.7518 0.6186 < 1
BERT 0.7963 0.8283 4,106.27

Joke_3414 NB Word Count 0.5229 0.4297 0.77
SVM Char N-gram 0.5417 0.4705 0.84
RF Char N-gram 0.4692 0.3718 1.09
NN Char N-gram 0.5121 0.4526 33.96
CNN Word Embedding 0.4985 0.4266 922.02
RCNN Word Embedding 0.4720 0.4144 4,787.52
fastText Word Bi-gram 0.5036 0.4195 5.05
BERT 0.6429 0.6183 13,108.68

CTC_27320 NB Word Count 0.4243 0.1669 0.96
SVM TFxIDF 0.4963 0.3706 32.12
RF Char N-gram 0.3507 0.1560 18.37
NN Char N-gram 0.4559 0.3312 94.51
CNN Word Embedding 0.3605 0.1709 3,580.61
RCNN Word Embedding 0.3559 0.1699 3,579.44
fastText Word Bi-gram 0.4557 0.2838 < 5
BERT 0.4217 0.3394 107,890.33

Reuters_9130 NB Word Count 0.8824 0.4112 0.08
SVM TFxIDF 0.9513 0.7573 1.42
RF TFxIDF 0.8450 0.3556 0.94
NN TFxIDF 0.9482 0.7541 25.44
CNN Word Embedding 0.9396 0.6906 175.21
RCNN Word Embedding 0.9377 0.6885 175.20
fastText Word Bi-gram 0.9369 0.6784 < 3
BERT 0.9124 0.4581 16,223.65

Because DL techniques use numerous trainable parameters, we ran the 
classifiers on a virtual machine (VM) on the Google Cloud Platform.  The VM 
has a NVIDIA Tesla K80 GPU with 12 GB RAM.  The execution time for each 
method is also reported in Table 3 to reveal the computation power required for 
each method.  The fastText tool does not support GPU and is fast enough to run on http://joemls.tku.edu.tw
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a MacBook computer.  Therefore, only its execution time is available for reference.
In Table 3, we show the performance metrics for each ML method for all five 

datasets.  If there are multiple feature sets that can be applied to a classifier (e.g., 
NB, SVM, RN, NN, and fastText), only the one that leads to best performance 
is shown for clarity.  The time spent on training and predicting the datasets is 
also shown to reveal the cost of applying a certain machine learning technique.  
Note that BERT may output slightly different results even with the same hyper-
parameters (such as learning epochs) due to its randomness during its training and 
prediction process.  Nevertheless, the output variation of BERT is insignificant 
compared to its performance gap with other classifiers.

In terms of efficiency, all the DL techniques are time-consuming, except for 
fastText.  Generally, the more layers of the neural networks that are used, the more 
time is needed to train and test the datasets.  As an example, BERT spent far more 
time than the others on the CTC_27320 dataset: it took about 30 hours (107,167 
seconds) on a K80 GPU to train 19,267 documents and about 12 minutes (723 
seconds) to predict 8,054 test documents.  In terms of the cost of using the Google 
Cloud Platform (GCP), it took about US$30 to train and predict the CTC_27320 
and Reuters_9130 datasets using GCP’s VM and GPU.  Therefore, only when more 
powerful and cheaper computation facilities to train BERT are available, can it be 
used to label the text categories, as its prediction time is still within the acceptable 
limit (predicting about 11 documents per second for the CTC_27320 dataset).

In terms of effectiveness, BERT excels for the Joke_3414, News_914, and 
WebDes_1686 datasets.  For the Joke_3414 dataset with nine categories, both 
BERT’s MicroF1 and MacroF1 are far better than the other classifiers, with an 
absolute improvement of 10.12% (0.6429-0.5417) for MicroF1 and an absolute 
14.78% (0.6183-0.4705) improvement for MacroF1 compared with the second 
best SVM classifier.  This is a great enhancement achieved by BERT.  However, 
compared to the human annotators’ consistency (inter-rater agreement is 0.97 in 
Cohen’s kappa coefficient), all the machine classifiers have a great deal of room to 
improve because we hypothesize that the upper bound performance for a machine 
classifier would be higher than 0.64 in the Joke_3414 dataset (as the inconsistency 
gap between humans is very small, meaning that it is easy for humans to 
determine their topical category based on the texts).

For the News_914 dataset with 12 categories, BERT not only performs the 
best, but also its MacroF1 (0.8283) exceeds its MicroF1 (0.7963).  This is another 
unparalleled performance achieved by BERT, as it is very difficult for MacroF1 
to exceed MicroF1 in a skewed dataset.  As can be seen from Table 4, the training 
examples for the smallest five categories have fewer than 20 texts (10 times less 
than that of the largest categories) and BERT can predict them very well, except http://joemls.tku.edu.tw
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for the last category.  We hypothesize that 1. for the smallest four categories with 
F1 over 0.8, it is easy to tell their topical themes based on the news story; and 
therefore 2. BERT can perform well despite only a small set of training examples 
being available, because it was pre-trained with a large set of texts and was able to 
capture the contextual meanings of Chinese characters to some extent.

Actually, BERT was trained on very large corpora (BooksCorpus with 
800 million words and English Wikipedia with 2,500 million words for the 
English model alone) for a very long time (4 days on 4 to 16 Cloud TPUs) using 
bidirectional contextual information based on a deep network architecture (12 
layers of attention-based and position-aware transformers).  The resulting pre-
trained word representations are thus context-aware, which captures more precise 
semantics than the context-free word representations of Word2Vec.  For example, 
the word embedding vector of “bank” in “bank corruption” and “river bank” is 
different for BERT but is the same for Word2Vec, which apparently led to better 
semantic processing for BERT over Word2Vec.

However, these word embeddings capture only vague (or latent) semantics, 
especially for those words that do not occur often enough in the training corpora.  
The embeddings are 300-dimensional (for Word2Vec) or 768-dimensional (for 
BERT) real-value vectors.  One cannot tell the meaning only by looking at 
these vectors.  They need to be compared or processed in a task such as text 
classification to show their usefulness.

For the highly skewed datasets, such as CTC_27320 and Reuters_9130, 
BERT performs more poorly than the traditional classifier SVM.  One of the 
techniques to build the language knowledge in BERT is to mask an English word 
(or a Chinese character) in a sentence and try to predict the masked word by its 
contextual words during its training.  Although much word knowledge can be 

Table 4	 Breakdown Effectiveness for Each Category  
in the News_914 Dataset by BERT

Precision Recall F1-score Num. of  
test texts

Num of  
training texts

004-Industry 0.7925 0.8485 0.8195 99 232
003-Finance 0.6304 0.5800 0.6042 50 117
001-Politics 0.8889 0.7273 0.8000 33 78
002-Society 0.8750 0.9545 0.9130 22 53
009-Life 0.6842 0.7647 0.7222 17 40
006-Entertainment 0.9375 1.0000 0.9677 15 38
008-Local 0.8462 0.9167 0.8800 12 29
005-Technology 1.0000 0.7143 0.8333 7 18
007-Sports 1.0000 1.0000 1.0000 4 12
010-Medicine 1.0000 1.0000 1.0000 4 10
013-Education 1.0000 1.0000 1.0000 4 10
012-Leisure 0.5000 0.3333 0.4000 3 7

http://joemls.tku.edu.tw
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captured by this technique, still a considerable amount of language information 
other than this kind of co-occurrence is not easily captured, such as phrases and 
multi-word name entities.  This may be the reason why BERT is not the optimal 
technique.  Another possible reason is that the terms or sentences used in the texts 
of CTC_27320 and Reuters_9130 occur rarely in the pre-training data of BERT, 
because texts in CTC_27320 were collected between 1966 and 1982 and texts in 
Reuters_9130 contain many business news abbreviations from 1987, such as qtr 
(for quarter), dlrs (for dollars), etc.  This vocabulary mismatch may have degraded 
BERT’s performance in these two datasets.  Even so, the exact reason why 
BERT failed on CTC_27320 and Reuters_9130 still needs further exploration.  
The commonly observed unstable performance of deep neural networks based 
on latent semantics trained in the embedding vectors (BERT seems not to be an 
exception) is a disadvantage of applying the current DL technology.

Based on Table 3, SVM is a competitive technique in TC tasks, even for 
Chinese, which confirms past studies that SVM is a dominant text classifier.  
Given a proper feature set, SVM is able to perform well because of its innovative 
idea of creating support vectors that maximize the margin to separate categories 
and therefore is capable of generalizing well to unseen examples.  Although not 
shown here, we observed that even SVM may perform poorly if supplied with 
an incorrect feature set, such as word n-grams on these datasets.  However, this 
disadvantage is relatively better than the word embedding based DL methods, 
because the feature sets supplied to SVM are controllable and interpretable, such 
that we know where to improve (e.g., by trying another feature set as we did in 
this experiment).

From Table 3, we also observe that: 1. When efficiency is a concern, SVM 
is generally the most effective classifier if a suitable feature set is used for a 
particular TC task.  2. A single hidden-layer neural network (NN) can compete 
with SVM at the cost of larger computation power.  3. The DL methods (CNN, 
RCNN, and fastText) did not show any advantage in these five tasks, even 
though they utilized pre-trained embedding vectors that embedded additional 
language knowledge.  4. NB is a method that is obviously only feasible for large 
categories, because the MacroF1 gap between NB and the others is much larger 
than its MicroF1 gap, which is quite reasonable due to the nature of NB. 5. This 
phenomenon of NB does not occur to the DL methods, at least not for fastText. 6. 
RF is not a good text classifier, because it performed worst on four datasets.

Conclusion
In answer to our first research question, and also as a general guideline for 

ML-based text classification, SVM and BERT can be the first choices for any new 
dataset based on the above experiments, discussions, and past studies.  For SVM, http://joemls.tku.edu.tw
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the choice of feature sets is important.  For BERT, only the first 512 characters 
(or words) will be considered currently.  Therefore, if the texts in the new dataset 
are too long, care must be taken to see if the first 512 characters could be used to 
determine their topics.  Also, be aware of the corpora used to pre-train the BERT 
model.  If the characteristics of the training corpora are very different from those 
of the new dataset, BERT might not yield good results, although this is unlikely to 
happen with modern texts.  Also, if computational resources are scarce, SVM is 
preferable to BERT, and vice versa.

In response to our second research question, the problem of correct 
prediction for very small categories (which is viable for humans) is feasible for 
BERT for some datasets with commonly seen topics such as those in the news, 
but it may be necessary to seek more varieties of deep learning methods for 
other older datasets such as CTC_27320 and Reuters_9130, or to resort to other 
solutions such as few-shot learning (Yan et al., 2018) or a combination of various 
approaches.

Actually, subsequent improvement of BERT has been made in ERNIE 
(Enhanced Representation through kNowledge IntEgration; Sun, Wang, Li, Feng, 
Chen, et al., 2019) released by Baidu, another ERNIE by Tsinghua University in 
Beijing (Z. Zhang et al., 2019), XLNet by Carnegie Mellon University/Google 
Brain (Z. Yang et al., 2019), and ERNIE 2.0 by Baidu (Sun, Wang, Li, Feng, Tian, 
et al., 2019).  Because these improvements were made in recent months, small 
updates to their publicly released codes occur from time to time.  Therefore, they 
were not used in this current study.

Note that if the explored datasets are not diverse enough, it would easily 
lead to a different or biased conclusion.  An example biased conclusion might be 
that BERT is most effective for Chinese TC tasks if only the first three datasets 
(WebDes_1686, News_914, and Joke_3414) are used.  Therefore, the five Chinese 
text classification datasets (the four in Table 1 and the CnonC for verification) 
together with the TC source codes have been released at https://github.com/
SamTseng/Chinese_Skewed_TxtClf.  They would facilitate future study to 
further examine the strengths and possible weaknesses of the new techniques 
(e.g., ERNIE, XLNet, etc.).  In this way, we would be more knowledgeable to 
determine the feasibility of automated topic analysis in library/institute practice, 
and therefore to decide when and in what ways human effort should be involved 
in the tasks related to information organization and topic analysis.
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主題分析自動化的可行性：
深度學習技術應用於偏態分佈之
中文文件分類的實證評估ψ

曾元顯

摘要

文件分類是圖書資訊學中的主題分析問題，而深度學習（deep 
learning，DL）為近年來運用大量語言知識的語意理解技術。本
研究旨在透過四種現成的DL方法（CNN、RCNN、fastText和
BERT）與四種傳統機器學習技術，對五個偏斜分佈語料（四個中
文和一個英文）做成效比較，來評估DL進行主題分析的可行性。
結果顯示，BERT對中等偏斜的語料有效，但對於高度偏斜的文件
自動分類任務成效仍不佳。與傳統方法（例如SVM）相比，其他三
種DL方法（CNN、RCNN、fastText）在五個文件分類任務上沒有
顯示出優勢，儘管它們在預訓練的詞彙表示法中獲取了廣泛的額

外語言知識，其成效也沒有比較好。為了方便將來的研究，本研

究使用到的中文語料庫以及所有經過改編的機器學習和評估程式

碼均公開發布。

關鍵詞： 文本分類，語料庫，深度學習，績效評估

ψ 本文的一部分已發表於：Yuen-Hsien Tseng, “An Empirical Evaluation of Deep
Learning Techniques Applied to Skew-Distributed Text Classification,” Proceedings of 
the International Conference on Library and Information Science (ICLIS), pp. 303-310, 
Taipei, Taiwan, July 12-13, 2019（此國際會議英文論文僅有2,915字，且結論與本篇
不同）。本篇論文為上述會議論文的大幅改寫，從2,915個英文字，修改並增加至 
8,414字，且結論頗為不同。
國立臺灣師範大學圖書資訊學研究所優聘教授

科技部人工智慧生技醫療創新研究中心協同主持人
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本文作者同意本刊讀者採用CC創用4.0國際 CC BY-NC 4.0（姓名標示-非商業性）模式使用此
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