top

images聯絡我們 images
facebook Share

Search Result Detail

Article Id 52302
Journal Title 教育資料與圖書館學
Journal of Educational Media & Library Sciences
Title 利用文字內容主題特徵與機器學習方法探討MIS相關期刊在ISI資料庫上的主題分類| Full Text Avaliable |     
A Study of the Subject Categorization of the MIS-related Journals in the ISI Databases Using Topical Features in the Text Content and Machine Learning Methods
Author(s) 林頌堅
Sung-Chien Lin
ORCID 0000-0003-0090-0167
DOI
DOI:10.6120/JoEMLS.2015.523/0027.RS.AM
Language Chinese
Vol.&No. Vol.52No.3
Publishing Date June 2015
Start/End Page 269~298
Doc Type Research Article
Chinese Abstract 本研究利用主題模型、期刊群集與類別預測等方法,分析與討論ISI主題類別IS&LS的MIS相關期刊中同時被賦予Management類別的情形。在期刊群集實驗裡,所有被指定到Management類別的期刊以及其它同樣具有相似主題特徵的期刊都被聚集在同一個期刊群集內,「管理」是它們共同且最突顯的主題。由於這個群集包含的期刊和先前研究的MIS群集大多相同,因此視為本研究的MIS群集。類別預測實驗使用分類迴歸樹方法,分別以ISI的Management類別以及本研究的MIS群集做為正案例,進行期刊類別預測。兩次試驗產生的分類樹都以「管理」主題的出現機率為主要的分類規則,但後者不僅分類樹較為單純,同時預測錯誤也較少。也就是如果將MIS群集內的所有期刊都指定到Management類別,會使檢索的成效更為周全有效。
EnglishAbstract In this study we analyzed and discussed that the MIS-related journals under the ISI subject category of IS&LS are simultaneously given with subject category Management, using methods of topic modeling, journal clustering and subject category prediction. In the experiment of journal clustering, all journals under subject category Management and other journals also having similar topical features can be gathered into a cluster, and “management” is their common and the most distinct topic. Because the journals belonged to this cluster are almost same to those in the MIS clusters generated by the previous studies, we considered it as the MIS cluster in this study. In the second experiment, we used the classification and regression tree (CART) technique to predict assignment of subject category with that the journals in the original subject category Management and in the MIS cluster produced in this study as positive examples, respectively. The trees generated by the two tests both used the occurring probabilities of the topic “management” as the main classification rule. However, in the latter test, we did not only obtain a simpler classification tree but also had a result with less predicting errors. This means that if all journals in the MIS cluster could be given with subject category Management, the retrieval results can be more effective and complete.
Chinese Keywords ISI主題類別;機器學習;主題模型;期刊群集;類別預測;
English Keywords ISI subject category;Machine learning;Topic modeling;Journal clustering;Category prediction;
Metadata METS    DOAJ    DC    MODS    RSS1.0    RSS2.0   
Chinese APA style citation 林頌堅(2015)。利用文字內容主題特徵與機器學習方法探討MIS相關期刊在ISI資料庫上的主題分類。教育資料與圖書館學52(3),269-298。 doi:10.6120/JoEMLS.2015.523/0027.RS.AM
EnglishAPA style citation Lin, S. C.(2015). A Study of the Subject Categorization of the MIS-related Journals in the ISI Databases Using Topical Features in the Text Content and Machine Learning Methods. Journal of Educational Media & Library Sciences, 52(3), 269-298. doi:10.6120/JoEMLS.2015.523/0027.RS.AM
ChineseChicago style citation 林頌堅。「利用文字內容主題特徵與機器學習方法探討MIS相關期刊在ISI資料庫上的主題分類」,教育資料與圖書館學52卷,3期(2015):269-298。 doi:10.6120/JoEMLS.2015.523/0027.RS.AM
EnglishChicago style citation Sung-Chien Lin, "A Study of the Subject Categorization of the MIS-related Journals in the ISI Databases Using Topical Features in the Text Content and Machine Learning Methods," Journal of Educational Media & Library Sciences 52, no. 3(June 2015): 269-298. doi:10.6120/JoEMLS.2015.523/0027.RS.AM
Copyright © 2013 Dept. of Information and Library Science, TKU  ISSN:1013-090X  DOI:10.6120/JoEMLS
Publisher:No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)
E-Mail:joemls@mail2.tku.edu.tw