教育資料與圖書館學

Journal of Educational Media & Library Sciences

http://joemls.tku.edu.tw

Vol. 49, no. 2 (Winter 2011): 215-240

Ambiguity Resolution for Author Names of Bibliographic Data

Kuang-Ha Chen Professor

E-mail: khchen@ntu.edu.tw

Chi-Nan Hsieh
Graduate Student

E-mail: r97126004@ntu.edu.tw

Ambiguity Resolution for Author Names of Bibliographic Data $^{\psi}$

Kuang-Hua Chen*

Professor

E-mail: khchen@ntu.edu.tw

Chi-Nan Hsieh

Graduate Student Department of Library and Information Science National Taiwan University Taipei, Taiwan

E-mail: r97126004@ntu.edu.tw

Abstract

Users have been confronted with serious problems in ambiguities of author names, while a great deal of scholar information quickly accumulated in Internet. Therefore researches on ambiguity resolution for author name are indispensable. With comparison to previous work, this study attempts to address the problem using information contained in bibliographic data only. Five features, co-author (C), article title (T), journal title (J), year (Y), and number of pages (P), are used in this study. Note that feature Y and feature P are not ever used before. Both supervised learning methods (Naïve Bayes and Support Vector Machine) and unsupervised learning method (K-means) are employed to explore 28 different feature combinations. The findings show that the performance of feature journal title (J) and co-author (C) is very effective. Feature J plays an important role in three different methods, and feature C is effective in SVM. In addition, feature Y and feature P obviously enhance accuracy and the average improvement rate of feature Y is more significant than that of feature P ($\pm 2.5\%$ in average). It is also shown that the performance of feature combination CTJ is not superior to JYP, and the performance of feature combinations CJY, JY and J are also very effective in the three methods. Finally, it is found that the accuracy of disambiguation on larger datasets is 10% inferior to that of the smaller ones, which indicated the limitation of using bibliographic data only. Consequently, the effective approach to disambiguating author name has to not only fully use bibliographic data but also introduce appropriate outer resources.

Keywords: Author disambiguation, Bibliographic data, Machine learning

Introduction

In general, names seem helpful in identifying a person with great ease. However, with widespread use of digital information in Internet era, name

Part of this article had been presented at The International Conference of the 40th Anniversary of *Journal of Educational Media & Library Sciences*, March 7-8, 2011.

^{*} Principal author for all correspondence.

ambiguity problems have commonly occurred. The ambiguity occurs in names with their abbreviated forms, typos, misspellings, multiple authors sharing the same name, or one author with multiple name labels. These often result in problems to researchers examining retrieval results of bibliographical databases. Name ambiguity affects not only the speed of information gathering but the consequent retrieval results. Han et al. (2004) points out two types of common name ambiguities. The first type of name ambiguity occurs when an author has multiple name labels. For example, the author "David S. Johnson" may appear in various publications using different name abbreviations, such as "David Johnson", "D. Johnson", or "D. S. Johnson". The second one is that several authors may share the same name label. For instance, "D. Johnson" may refer to "David B. Johnson" from Rice University, "David S. Johnson" from AT&T research lab, or "David E. Johnson" from Utah University.

Many authorities are making their ways towards the problem. International Standard Organization has established International Standard Name Identifier (ISNI, 2010) and the Draft ISO Standard (ISO 27729) has planned to identify every creator of works by using unique 16-digital number. In addition, there are more and more nation-level systems developed in preparation for the coming of ISNI, such as Digital Author Identifier (DAI, 2010) in the Netherlands, People Australia (2010) service by the national library of Australia, and Research Name Resolver (2010) in Japan. Although the standard will take effect in the near future, lots of bibliographic documents and information with name ambiguities still need to be coped with.

In fact, many well-known database vendors also contribute to solutions to the pressing problem. Two approaches are usually applied to handling this problem. The first approach is to build supplementary identification functionalities to help end-users to identify their retrieval results. Elsevier (2010), for instance, provides "author search" function for its Scopus Database. The function can help users search ambiguous names and make a list of these authors sharing the same name label. However, it still requires complete author information to produce desired results, such as affiliation, subject area, or resident city/country of these authors. Besides, Web of Science database by Thomson Reuters (2010) offers Distinct Author Identification System, which claims it uses proprietary algorithm to cluster the namesakes and his/her works. However, the system does not process every record in database (only before 2007), and the performances of its clustering is unknown. The second one is to establish a registry of unique author identifiers, such as Researcher ID by Thomson Reuters (2010) and Author Service by Wiley-Blackwell (2010). Even if the mechanism looks simple and feasible, they are in fact passive methods. Different identifiers may still make users feel more confused.

Libraries usually build or apply authority files in response to these ambiguities, such as OCLC (2010) WorldCat Identity Service and the Scholar Universe of ProQuest (2010). The former service contains more than 20 million name records, but it is just in its beta version so far. The latter also provides high-quality name search by the professional editor group of ProQuest, and it offers two millions profiles to users for free. These name searches of identification mechanisms might achieve desired retrieval results, but they cannot handle a large amount of existent literature in databases without a lot of time and manpower.

In general, the background mentioned above shows that name or author disambiguation is not complicated when it comes with sufficient and correct individual information. In reality, however, the personal information is not easily available. Therefore, this study attempts to identify authors sharing same name by using bibliographic data only, which is generally available in bibliographic databases or digital libraries. Two objectives of this study are: 1) to explore how the performance can be achieved by using bibliographic data only, which is composed of authors, article titles, journal titles, publication date and number of pages and 2) to investigate the effectiveness of features publication date and number of pages, which have never been discussed before.

The structure of this paper is shown as follows. Section 2 describes previous studies. Section 3 introduces methodology of this study. Section 4 presents the experimental results and discusses the findings. Section 5, finally, gives a brief conclusion.

Previous Work

This study focuses on ambiguity resolution for author in bibliographic data. Name disambiguation, in general, will be discussed first in this section. After general discussion to name disambiguation, disambiguation for author name will be discussed to have a fundamental understanding on this issue.

Name disambiguation

The problem of name ambiguity originates in a broader issue: identity uncertainty and the study of pioneers in this area called "record linkage" by Fellegi and Sunter (1969). They developed a statistical model to process multiple records in databases and regard records as feature vectors in order to measure their similarity. This approach has influences on several studies related to database managements, such as data merge/purge (Hernandez & Stolfo, 1998) and duplicate record detection (Elmagarmid et. al., 2007). Nowadays, digital library researchers and large-scale database vendors have not only paid attention to keywords search but also emphasized the importance of name/author search (Smalheiser & Torvik, 2009). Therefore, name disambiguation has been received much more attention in recent years.

In general, to carry out name disambiguation, just like data or text mining, a "machine learning" model has to be constructed (Mitchell, 1997). Machine learning depends on the "training set" to select important features and then the trained model is used to determine the class of target items. Finally, appropriate methods of evaluation will be carried out, which would be discussed further later. Two sorts of machine learning approaches are considered in name disambiguation: supervised and unsupervised learning. The key difference between supervised methods and unsupervised methods is that supervised learning methods need labeled data for training, while unsupervised methods do not. The performance of supervised methods is generally better than that of unsupervised one. In the work of disambiguating authorship, each author name can be considered as a class and then name disambiguation classifies citations into their author classes (Han et al., 2005a).

Many researchers have developed related mechanisms or procedures for name disambiguation in recent years, but the datasets they used are not identical. The diversities of datasets influence the types of selected features and the methods for evaluation. More features considered, in general, could have higher possibility to achieve better performance, so the researchers presently look for new sources of features. However, there are still many alternatives to resolutions of name ambiguity using the same features. Some put emphasis on the distance between strings (Torvik et al., 2005), and others emphasized the use of prior knowledge (French, Powell, & Schulman, 2000). Moreover, different methods for feature weighting are proposed in literature, such as Jaccard, TFIDF (Term Frequency and Inverse Document Frequency), Jaro-Winkler and Levenstein, and so on.

Several studies show the current status of name disambiguation. Authorship attribution and stylometry via the signatures of writing have applied to the study about the novelist's change of literary style over time (Can & Patton, 2004) and prediction of an author's gender (Koppel et al., 2002). Record linkage in administrative databases has a long history based on the work by Fellegi and Sunter (1969). A number of follow-up researches are constantly implemented for various data, such as public health records (Jaro, 1995), census records (Winkler, 1995), name and address information (Churches et. al., 2002). Ambiguity resolution for authors has developed in recent years. Several research groups used different sources of dataset, such as bibliographic data (e.g. Hill & Provost, 2003; Han et al., 2004, 2005a, 2005b; Huang, Ertekin, & Giles, 2006; Bhattacharya & Getoor, 2007; Culotta et. al., 2007), the parts of full-texts (Song et al., 2007), and the information of web pages (e.g. Kanani et al., 2007; Yang et al, 2007, 2008; Tan, Kan & Lee, 2006). The applications to the records in multimedia database are active as well, such as automatically building authority file of sheet music (DiLauro et al., 2001) and name disambiguation for Internet Movie DataBase (IMDB) by social network model of individuals (Malin, Airoldi & Carley, 2005).

Ambiguity resolution for author names has been the focus of general name disambiguation in many realistic researches. Therefore, we will discuss author name disambiguation in detail in the next subsection.

Ambiguity resolution for author

As mentioned above, several research task forces devoted themselves in author name disambiguation for different purposes. "CiteSeer" is a famous digital library service developed by Steve Lawrence, Lee Giles and Kurt Bollacker (CiteSeer, 2011). CiteSeer collected documents to establish a full-text database using web crawlers. Maintaining correctness and consistence of data in a large-scale database demands appropriate algorithms and automatic classification or clustering.

Earlier studies stressed the methods of classification/clustering and computerized scalability by using limited feature combination (i.e. co-author, title and journal title), so accuracy was not the first concern (Han et al., 2004, 2005a, 2005b; Huang, Ertekin, & Giles, 2006). Later studies managed to apply additional features, such as the first page of the paper.

Getoor and his colleagues (2006, 2007), then, emphasized the analysis of author social network. In the beginning, Bhattacharya and Getoor (2006) used LDA to cluster bibliographic records based on name tokens, but the implementation process is too time-consuming. They introduced in the concept of "collective entity resolution" and found that recognition results can help each other. For example, assume name A and name B co-occurred in two records. If it has been confirmed that two As are different individuals, it is probable to infer that two Bs are also different persons (Bhattacharya & Getoor, 2007). In contrast, Bilgic et al. (2006) developed an interactive disambiguation system "D-Dupe", which used bibliographic information to build a co-authorship network in order to assist in the manual identification.

McCallum and his colleagues have published a series of influential studies in author disambiguation and created a digital library called Rexa, which contains seven million records of computer science literature. The characteristics of their works are three-way and high-order simultaneous comparisons (beyond common pairwise comparisons). Culotta et al. (2007) employed aggregate constraints to enhance their model based on article titles, emails, affiliations and venue of publication, etc. Kanani, McCallum, and Pal (2007) exploited active learning for web information gathering in order to supplement articles' metadata. That is to say, applying any available resource for author name disambiguation is one of mainstreams in this research field.

In Han's studies (Han et al., 2004, 2005a, 2005b), they first constructed a test suite (hereafter DBLP dataset) using bibliographic records of DBLP database.

Supervised methods and unsupervised methods were then used for author name disambiguation. The former achieved accuracy of 70%, and the latter 65%. However, only co-author names, article titles, and journal titles were used in their study. Yang et al. (2007, 2008) subsequently used the same dataset by Han et al. (2005a) and added outside features from web to their disambiguation work by pair-wise clustering. Yang et al. (2007) extracted citation relationships from the URL information of web document, and they improved the method by building topic and web correlation (Yang et al., 2008). Eventually, the accuracy of Yang's results (2007, 2008) is better than Han's in general. Table 1 shows the comparisons of their performance. However, the web information on the Internet is not always available and requires additional manual work.

Table 1 Summary of Previous Work

	Table 1 Suili	mary of Frevious vvoi	N.
Researcher	Method	Dataset	Accuracy
Han et al. (2004)	Two Supervised Learning Approaches (Bayes vS. SVM)	1) Publication in author homepages (2 names) 2) Citation in DBLP database (9 names)	
Han et al. (2005a)	Hierarchical Naïve Bayes mixture model	1) Publication in author homepages (2 names) 2) Citation in DBLP database (14 names)	,
Han et al. (2005b)	K-way Spectral Clustering	1) Publication in author homepages (2 names) 2) Citation in DBLP database (14 names)	,
Yang et al. (2007)	Pair-wise clustering with additional web information	Citation in DBLP database (14 names)	20% better than Han's K-way
Yang et al. (2008)	Pair-wise clustering with additional topic & web correlation	Citation in DBLP database (14 names)	25% better than Han's K-way

In general, each method or approach mentioned above could be applied to any database with bibliographic data, such as DBLP, CiteSeer, arXiv, MEDLINE, Google Scholar, Web of Science (Thomson Scientific), Scopus (Elsevier), ADS (Astrophysics Data System), Libra (Academic Search), and RePEc. In addition to bibliographic data, some outer resources are taken into account for delivering satisfactory performance as well, such as full-text articles and information from web pages. However, copyright of full-texts and privacy concerns of author information could be a hindrance to obtaining these supplementary resources. For these reasons, we consider author name disambiguation using information contained in bibliographic data only and would like to investigate the feasibility and performance based on this consideration accordingly.

Therefore, the purpose of this study is to explore performance of various feature combinations using complete information of bibliographic data and

investigate influences of features which were not used ever before, i.e., "year" and "number of pages", on disambiguation.

Research Design

In order to investigate different factors, e.g., feature combinations, learning methods, and complexities of datasets, many resources are used and arranged in this study. The research framework is shown in Figure 1. The procedure consists of data collecting, data processing, model learning, and performance evaluating. The following subsections explain these stages.

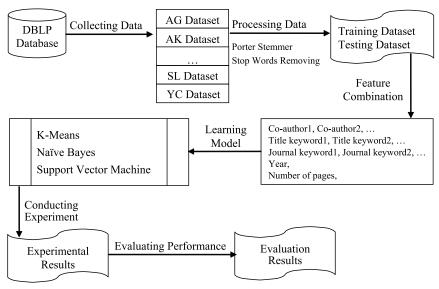


Figure 1 Research Procedure

Collecting data

The datasets employed in this study was the same DBLP datasets constructed by Han et al. (2005a, 2005b), which contains 8,441 bibliographic records collected from DBLP database. The datasets consists of 14 popular author names shared by 476 individual authors. In order to increase the complexity of ambiguity, the first names of author names were changed into initials in Han's design. The DBLP datasets of this study is provided by Dr. Giles, but the feature information that we would like to analyze consists of five features (i.e. co-authors, article titles, journal titles, year and number of pages) rather than three features which Han et al. (2005a, 2005b) used in their study.

Therefore, we have to supplement the needed features, i.e., year and number of pages. In the process of data supplementing, we unfortunately found some problems of the DBLP datasets as the failure cases pointed by Pereira et al. (2009), such as wrong author names or duplicate names marked in bibliographic record,

the lack of article titles or journal titles. We then have to revise and delete some bibliographic records in DBLP datasets accordingly. The statistics of test data used in this study is shown in Table 2.

Table 2 The Five Ambiguous Author Name Datasets

Name		ber of t Authors	Number of Bibliographic Records		
	Original	Revised	Original	Revised	
A. Gupta (AG)	26	26	577	572	
A. Kumar (AK)	14	14	244	238	
C. Chen (CC)	61	61	800	679	
D. Johnson (DJ)	15	15	368	347	
J. Lee (JL)	100	99	1417	1270	
J. Martin (JM)	16	15	112	103	
J. Robinson (JR)	12	12	171	168	
J. Smith (JS)	30	29	927	872	
K. Tanaka (KT)	10	10	280	267	
M. Brown (MB)	13	13	153	146	
M. Jones (MJ)	13	13	259	247	
M. Miller (MM)	12	12	412	384	
S. Lee (SL)	83	84	1457	1260	
Y. Chen (YC)	71	71	1294	1168	
Total	476	474	8471	7720	

Processing data and feature combinations

The purpose of this study focuses on performance of complete combinations of various features (e.g. authors, article titles, journal titles, venues) in bibliographic data for disambiguation. Accordingly 28 feature combinations are explored in the study to examine how each feature combination takes its effect. The framework is composed of three commonly used features Co-Author (C), Article Title (T), and Journal Title (J) in combination with two "never-used" features Year (Y) and Number of Pages (P). The possible combinations are shown in Table 3.

Table 3 28 Feature Combinations

	7 Combinations	21 Combinations with Features Y and P
One-feature	C; T; J	CY; CP; CYP; TY; TP; TYP; JY; JP; JYP
Two-feature	CT; TJ; CJ	CTY; CTJ; CTP; TJY; TJP; TJYP; CJY; CJP; CJYP
Three-feature	CTJ	CTJY; CTJP; CTJYP

Of course, a few pre-processing tasks are considered in our study. Porter's stemmer is used for titles (feature T) and journal titles (feature J), and stop words are removed by stop-words corpus from Toolkit in NLTK. In this way, it is believed that the remaining words in those two features are meaningful keywords.

Besides, the word occurrence is also considered for feature weighting which has been considered by many information retrieval researches (Lu, Xu, & Geva, 2008), so TFIDF scheme is adopted in the work of data processing. Term Frequency (TF) stands for the frequency of occurrence of keyword term in the

bibliographic record, and Inverse Document Frequency (IDF) stands for the inverse of the frequency of occurrence of keyword term in the dataset.

Learning model and evaluating performance

After data processing, each bibliographic record is transformed into a feature vector and ready for classification or clustering. Both supervised learning methods and unsupervised learning methods are employed to examine the performance of author name disambiguation. Two supervised learning methods used are Naïve Bayes (Toolkit in NLTK) and Support Vector Machine (LIBSVM) (Chang & Lin, 2010). The input format of Naïve Bayes in NLTK is "index = value". In addition, the format of SVM by LIBSVM is "index: value", and the attribute with null value in records is deleted. Both tools automatically generate accuracy value for evaluation. The ratio of training set and testing set is 7:3 and cross validation is used in training process.

For unsupervised learning method, K-means clustering is conducted using cluster module of Python. The input format of the K-means cluster module is vector tuple, such as "(5, 3), (10, 3)". Besides, the number of clusters is based on heuristics of our pretest implementation. Two author name datasets, A. Gupta and C. Chen, are used in pretest. We gradually increase the number of clusters from 5 to 150. Finally, we find while the number of authors of the dataset is fewer than 60, we will run K-means clustering from 5 clusters to 60 clusters. If the number is more than or equal to 60, we will run from 60 to 125. After clustering, the decision of label of each cluster is based on the number of tuple in cluster.

Like Han et al. (2005a, 2005b) and Yang et al. (2007, 2008), we evaluate the performance in terms of the disambiguation accuracy, calculated by dividing the sum of correctly clustered bibliographic records by the total number of bibliographic records in the dataset. The disambiguation accuracy is defined as follows:

$$Accuracy = \frac{\sum_{i \in I} n_{ir}}{N}$$

where 'I' is the set of individuals in the dataset, 'r' is the correct cluster of individual 'i', and 'N' is the total number of bibliographic records in the dataset.

Settings for year and number of pages

In order to consider features Year (Y) and Number of pages (P) in the study, year and number of pages in bibliographic data have to be transformed into corresponding codes meaningfully. For feature Year (Y), it is assumed that each author has his/her period of academic production, so year distribution of the whole dataset is segmented into intervals. According to the dataset, the publication dates of literature in DBLP were mainly between 1975 and 2005. Based on this observation, a time span of 10 years is used in this study.

As for number of pages (P), under the influence of publication types and authors' preference, numbers of pages of the bibliographic data are calculated first and intervals are set based on number of pages conventions of different types of publications. For example, the average length of papers of top 15 journals of computer science in Journal Citation Report (Thomason Routers, 2011) is 16.6 (see Table 4).

	Table 4	The Length of Regu	lar Paper in Tor	15 CS	Journals (up to Jan 2011)
--	---------	--------------------	------------------	-------	----------------------------------

Rank	Abbreviated journal title	Length of paper	5-year impact factor
1	ACM COMPUT SURV	35	7.667
2	HUM-COMPUT INTERACT	8	6.190
3	COMPUT INTELL	12	5.378
4	IEEE T EVOLUT COMPUT	No proclaimed specially	4.589
5	VLDB J	25	4.517
6	MIS QUART	20	4.485
7	IEEE T PATTERN ANAL	14	4.378
8	J AM MED INFORM ASSN	10	3.974
9	J CHEM INF MODEL	No proclaimed specially	3.882
10	J COMPUT AID MOL DES	No proclaimed specially	3.835
11	IEEE T SOFTWARE ENG	14	3.750
12	ACM T GRAPHIC	No proclaimed specially	3.619
13	IEEE T MED IMAGING	8	3.540
14	INT J COMPUT VISION	No proclaimed specially	3.508
15	J WEB SEMANT	20 (from 15 to 25)	3.412
		Average = $16.6 = > 17$	

Three segmented points are designed in the study: three pages for poster papers, eight pages for conference papers, and more than 17 pages for journal papers. Then four intervals are constructed: fewer than 3 pages, 3 to 8 pages, 9 to 17 pages, and more than 17 pagers. In addition to the four intervals, two cases are considered: no page number and one page. Therefore, totally six cases for number of pages were considered.

Experimental Results

In this study, 14 author names of DBLP datasets are examined (see Table 2 above). Each feature combination is investigated with particular focus on features Y and P. In addition, the complexity of datasets is also explored. In the end, the features (or feature combinations) achieving best performance in each dataset are highlighted.

Common feature combinations

To begin with, the performance of author disambiguation without considering features Y and P is described. Because of the following comparisons of various feature combinations are considered three methods in this study, the statistics of rank are based on comparisons of 42 times (combinations of 14 datasets and three methods).

In one-feature (C, T and J) experiment, feature J scored 64.2% of the lead in the experiments (see Figure 2). Feature C obtained 37.5% of the lead, but feature T did not obtain the lead ever. This indicates that the outstanding performance of feature J and feature C in the disambiguation work for authors, and feature J is only satisfactory. In two-feature (CT, TJ and CJ) experiment, feature CJ scored 78.5% of the lead in the experiments (see Figure 3). Then, feature TJ obtained 19.0% of the lead, but feature CT only achieved 7.1% of the lead. As the result of comparison in one-feature (J > C > T), the rank comparison of two-feature is not surprising (CJ > TJ > CT).

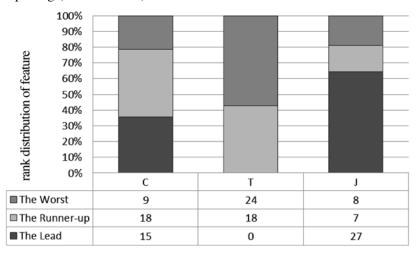


Figure 2 Rank Comparisons of Single Feature

However, it is found that the rank comparison of each feature combination is to a large extent influenced by different methods. Please take a look at the rank of one-feature in Table 5. Feature J achieves the first rank in K-means clustering (KM for short) and Naïve Bayes (NB for short) steadily. In contrast, the performance of feature C is generally more desired than feature J in Support Vector Machine (SVM for short). Then, in the rank of two-feature, although feature CT is always the worst in KM and NB, it is also not the case in SVM.

In three-feature (CTJ) experiment, it is concerned that whether CTJ achieved the best accuracy in the dataset owing to CTJ commonly regarded as "default" feature combination in many previous works. It is shown that feature CTJ leads other feature combinations only 7 times in the 42 times of comparisons of the best accuracy, and 6 times out of 14 times in SVM. As a result, when features C, T, and J are used at the same time, the combination cannot necessarily ensure the best performance. The performance of feature combination CTJ in SVM is different from KM and NB. In fact, the results in SVM match the findings of the study by Han et al. (2004).

Table 5 Statistics of Rank Comparisons in Different Methods

	K-means (KM)										
Rank of Sin	gle-Fe	re	Rank of Tv	Rank of Two-Feature				acy			
	C	T	J		CT	TJ	CJ		CTJ		
A. Gupta	2	3	1	A. Gupta	3	1	2	A. Gupta	no		
A. Kumar	2	3	1	A. Kumar	3	2	1	A. Kumar	no		
C. Chen	3	2	1	C. Chen	3	2	1	C. Chen	no		
D. Johnson	2	3	1	D. Johnson	3	1	2	D. Johnson	no		
J. Lee	2	3	1	J. Lee	3	1	2	J. Lee	no		
J. Martin	2	3	1	J. Martin	3	2	1	J. Martin	no		
J. Robinson	1	3	2	J. Robinson	2	3	1	J. Robinson	no		
J. Smith	2	3	1	J. Smith	3	2	1	J. Smith	no		
K. Tanaka	3	2	1	K. Tanaka	3	1	2	K. Tanaka	yes		
M. Brown	1	3	2	M. Brown	3	2	1	M. Brown	no		
M. Jones	1	3	2	M. Jones	2	1	3	M. Jones	no		
M. Miller	2	2	1	M. Miller	1	1	1	M. Miller	no		
S. Lee	2	3	1	S. Lee	3	2	1	S. Lee	no		
Y. Chen	2	3	1	Y. Chen	3	2	1	Y. Chen	no		

Naïve	Bayes	(NB)
-------	-------	------

Rank of Single-Feature			Rank of Two-Feature			Best Accuracy			
	C	T	J		CT	TJ	CJ		CTJ
A. Gupta	2	3	1	A. Gupta	3	2	1	A. Gupta	no
A. Kumar	3	2	1	A. Kumar	3	2	1	A. Kumar	no
C. Chen	2	3	1	C. Chen	3	2	1	C. Chen	no
D. Johnson	3	2	1	D. Johnson	3	1	2	D. Johnson	no
J. Lee	2	3	1	J. Lee	3	2	1	J. Lee	no
J. Martin	3	2	1	J. Martin	3	2	1	J. Martin	no
J. Robinson	2	3	1	J. Robinson	3	2	1	J. Robinson	no
J. Smith	2	3	1	J. Smith	3	2	1	J. Smith	no
K. Tanaka	2	3	1	K. Tanaka	3	2	1	K. Tanaka	no
M. Brown	1	3	2	M. Brown	2	3	1	M. Brown	no
M. Jones	3	2	1	M. Jones	3	2	1	M. Jones	no
M. Miller	1	3	2	M. Miller	2	3	1	M. Miller	no
S. Lee	2	3	1	S. Lee	3	2	1	S. Lee	no
Y. Chen	2	3	1	Y. Chen	3	2	1	Y. Chen	no

Support Vector Machine (SVM)

Rank of Single-Feature			Rank of T	wo-Fe	Best Accuracy				
	C	T	J		CT	TJ	CJ		CTJ
A. Gupta	1	2	3	A. Gupta	1	3	2	A. Gupta	yes
A. Kumar	3	2	1	A. Kumar	3	2	1	A. Kumar	no
C. Chen	1	2	3	C. Chen	2	3	1	C. Chen	no
D. Johnson	1	2	3	D. Johnson	2	3	1	D. Johnson	no
J. Lee	1	2	3	J. Lee	1	3	2	J. Lee	yes
J. Martin	2	3	1	J. Martin	3	2	1	J. Martin	no
J. Robinson	1	3	2	J. Robinson	2	3	1	J. Robinson	no
J. Smith	1	3	2	J. Smith	2	3	1	J. Smith	yes
K. Tanaka	1	2	3	K. Tanaka	3	2	1	K. Tanaka	yes
M. Brown	1	2	3	M. Brown	2	3	1	M. Brown	yes
M. Jones	3	2	1	M. Jones	3	1	2	M. Jones	yes
M. Miller	3	2	1	M. Miller	2	3	1	M. Miller	no
S. Lee	1	2	3	S. Lee	2	3	1	S. Lee	no
Y. Chen	1	2	3	Y. Chen	2	3	1	Y. Chen	no

Note: 1 = the lead, 2 = the runner-up, 3 = the third;

yes / no= Whether CTJ achieved the best accuracy in the dataset

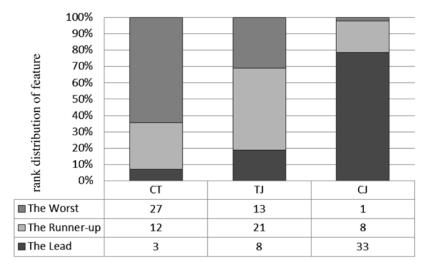


Figure 3 Rank Comparisons of Two Features

Features year (Y) and number of pages (P)

In order to present the influence of features Y and P, the average performance of each feature combination is shown in Figure 4. In contrast, the average improvement rates of performance with considering features Y, P or YP are investigated and shown in Figure 5. These results indicate that the performance with using features Y and P is better than that without using Y and P.

However, the performance above mentioned is estimated by the average accuracy rates in three methods. Therefore, separate performance with inclusion of feature Y and P is discussed as follow. The different impacts with inclusion of feature Y and feature P by three methods are shown in Figure 6 and Table 6. The improvement rate, which is the difference between the performance without and with feature Y or feature P is examined in this section.

First, with the inclusion of feature Y, the average improvement rates in KM are 6.08% (sd = 6.76%), 0.73% (sd = 1.00%) in NB model and 0.49% (sd = 1.12%) in SVM, respectively. Then, after adding feature P for author name disambiguation, the average improvement rates in KM are 3.59% (sd = 4.09%), 0.59% (sd = 0.82%) in NB model and -0.39% (sd = 0.95%) in SVM. Finally, when features Y and P are included at the same time, the average improvement rates in KM are 5.21% (sd = 5.28%), 1.38% (sd = 1.67%) in NB model and 0.33% (sd = 0.98%) in SVM (see Table 6).

From the findings shown above, feature Y and feature YP obviously delivered positive performance in our datasets. In addition, the inclusion of feature P also produced positive effects, but the influence is not obvious. However, the effect is more positive in K-means clustering (+4.98% in average) than that in Naïve Bayes Model (+0.90% in average) and Support Vector Machine

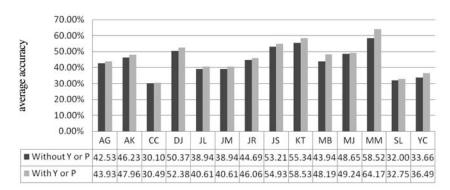


Figure 4 The Comparison Using with/out Features Y and P
(Average in 3 Methods)

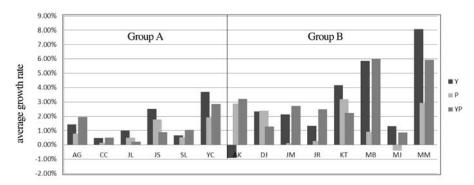


Figure 5 Average Improvement Rate Using Features Y and P
(Average in 3 Methods)

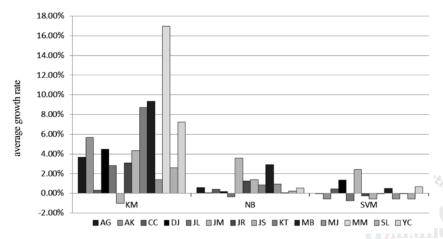


Figure 6 Improvement Rate Using Features Y and P
(Average of Y, P and YP)

		KM			NB			SVM	
	Y	P	YP	Y	P	YP	Y	P	YP
AG	2.89	3.16	4.99	0.47	0.63	0.60	0.97	-1.43	0.30
AK	-1.24	9.53	8.81	0.07	-0.13	0.17	-1.57	-0.77	0.69
CC	0.43	0.41	0.13	0.10	-0.11	1.19	0.89	0.17	0.24
DJ	5.69	5.69	1.19	0.11	0.01	0.41	1.21	0.59	2.27
JL	3.20	3.16	2.07	-0.27	-0.63	-0.09	0.06	-1.03	-1.29
JM	0.86	-3.73	-0.13	2.70	1.91	6.10	2.87	2.21	2.20
JR	2.97	1.53	4.77	0.86	0.66	2.29	0.19	-1.36	0.43
JS	6.44	5.51	1.09	1.50	0.79	1.91	-0.40	-1.03	-0.31
KT	10.14	9.64	6.33	1.41	0.69	0.56	0.93	-0.77	-0.23
MB	13.64	0.23	14.19	2.67	2.54	3.46	1.24	-0.01	0.29
MJ	3.94	-1.56	1.84	0.56	0.89	1.34	-0.57	-0.54	-0.61
MM	24.79	8.59	17.50	-0.53	0.24	0.36	-0.06	0.00	-0.03
SL	2.23	2.37	3.19	0.23	0.20	0.24	-0.46	-0.99	-0.26
YC	9.16	5.70	6.91	0.37	0.50	0.80	1.61	-0.43	0.86
Avg.	6.08	3.59	5.21	0.73	0.59	1.38	0.49	-0.39	0.33

Table 6 Improvement Accuracy Rate with the Inclusion of Feature Y and P

(+0.15% in average). Please refer to Figure 6. It is shown that feature Y and feature P could significantly enhance performance in K-means clustering, but not obviously in Naïve Bayes and SVM. In the experiment of K-means clustering, the improvement rate with feature Y maximally achieve 24.79% in MM Dataset, and feature P achieve 9.53% in AK Dataset and feature YP achieve 17.5% also in MM Dataset. But the maximum of improvement with feature Y or P in the experiment of Naïve Bayes and Support Vector Machine is about 2.5% at most. It seems feasible to explore whether the feature Y and P could efficiently enhance accuracy in various unsupervised approaches in future studies.

Complexity of datasets

According to the scale of datasets, the datasets are separated into two groups: Group A and Group B. Group A contains complicated datasets (more than 20 individuals and more than 400 bibliographic records), such as A. Gupta, C. Chen, J. Lee, J. Smith, S. Lee and Y. Chen. Group B includes the less complicated datasets (fewer than 20 individuals and fewer than 400 bibliographic records), such as A. Kumar, D. Johnson, J. Martin, J. Robinson, K. Tanaka, M. Brown, M. Jones and M. Miller.

In fact, the performance of Group A is not as good as Group B. The average performance of Group A is 39.14%, but 49.62% in Group B. Moreover, it is obvious that the impact with feature Y and P in Group A is less significant than Group B. The average improvement rate of Group A is 1.28, but 2.56% in Group B. Please refer to Figure 5. These suggest that the complexity of datasets can influence the performance. In other words, ambiguity in much larger datasets increases quickly like the complexity in the real world.

Top one feature combinations

Feature combinations achieving the best accuracy are explored here. Table 7 shows the "top 1 feature combination" for different methods and different author name datasets. Figure 7 displays top 1 distribution for different feature combinations. As shown in Table 7 and Figure 7 below, the significance of feature JYP and CTJ is obvious. Note that J, JY and CJY are of the third, fourth and fifth place, respectively.

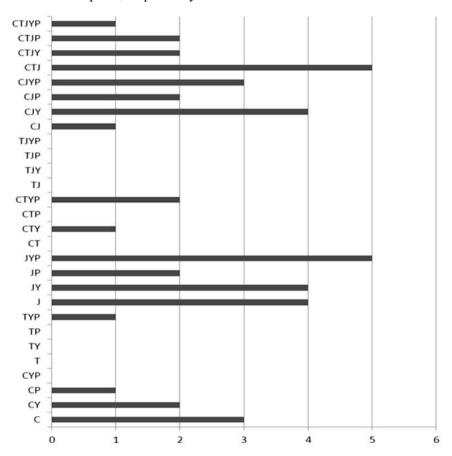


Figure 7 Top 1 Distribution of Feature Combinations

Table 7 shows 14 out of 18 top 1 feature combinations contain feature Y or feature P. That means features Y and P have their roles in author name disambiguation even though they have been not ever considered before. In addition, while considering distribution of each feature in all top 1 feature combinations, it is found that Y and P are not the worst. Please refer to Figure 8. Feature J accounted for 77.7% of top 1 feature combinations, feature C for 64.4% secondly, and feature Y thirdly.

	1		
	KM	NB	SVM
AG	СТЈҮ	JY	CTJ
AK	CP	JY	CJYP
CC	J	JYP	CJY
DJ	JР	JYP	CTYP
JL	J	JP	CTJ
JM	J	JY	CJP
JR	C	JYP	CTJY
JS	CY	CJY	CTJ
KT	CTY	CJP	CTJ
MB	ТҮР, СТҮР, ТЈҮР, СЈҮР, СТЈҮР	C	CTJ
MJ	C	CJYP	CTJP
MM	JY	CJY	CTJP
SL	J	JYP	CJ
YC	CY	JYP	CJY

Table 7 Top 1 Feature Combinations

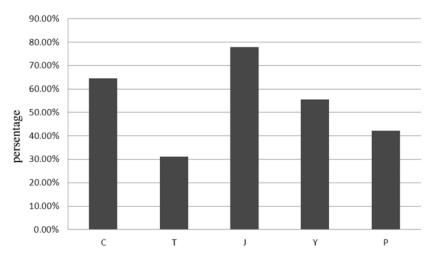


Figure 8 Percentage of Features in Top 1 Feature Combinations

Conclusions

This study investigates the effectiveness of features Y and P, and the performances of feature combinations on author disambiguation. It is shown that CTJ cannot necessarily ensure the best performance. In previous works, this common feature combination was usually regarded as a normal scheme, and these works focused on the designs of algorithm or the impacts of new resources. It is few to pay much attention to fully apply possible bibliographic features to author disambiguation. This study shows that the performance of JYP is not inferior to that of CTJ, and the performances of CJY, JY and J are also good in general. Although the best feature combination is mainly contributed by C and J, the inclusion of Y and P can substantially enhance the performance as well.

The inclusion of Y and P exhibits positive influence on disambiguation. The average improvement rates of the inclusion of Y, P, and YP are 2.44%, 1.29%, and 2.30%, respectively. As Section 4.2 mentioned, the impacts of Y and P are significant in K-means (improvement of accuracy is about 5%). However, the influence of them is not obvious in Naïve Bayes and Support Vector Machine. It seems feasible to explore if Y and P could efficiently enhance accuracy in various "unsupervised" approaches in future. In addition, the setting for Y and P ought to depend on characteristics of datasets. For example, the setting for number of pages for journals of humanities or social science should be more than 17.

Various feature combinations have different effects on author name disambiguation while using different clustering or learning methods. It is found that the performances of J and JYP in K-means clustering and Naïve Bayes Model are comparable to those of C and CTJ in SVM. Moreover, as the previous findings suggested, average improvement rate of Y and P in K-means (4.98%) is significantly better than that in Naïve Bayes (0.90%), but the improvement rate in SVM is not effective (0.15%). In other words, the "collocation" of features and learning approaches is an important research issue in author disambiguation.

The scale of datasets probably takes effects due to the different complexity. In general, the performances on larger datasets are much lower than those of the smaller ones, and the effectiveness is not obvious while introducing features Y and P. This reveals limitations of the solution of using bibliographic data only. As a consequence, using of appropriate outer resources is a critical issue for name or author disambiguation in future.

Acknowledgments

Parts of this work are supported by National Science Council under the grant number NSC98-2628-H-002-003-MY2.

References

- Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution in relational data. *ACM Transactions on Knowledge Discovery from Data*, 1(1), 1-36.
- Can, F., & Patton, J. M. (2004). Change of writing style with time. *Computers and the Humanities*, 38(1), 61-82.
- Chang, C. C., & Lin, C. J. (2010). *LIBSVM A library for support vector machines (Version 3.0)*. Retrieved May 18, 2011, from http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Churches, T., Christen, P., Lim, K., & Zhu, J. (2002). Preparation of name and address data for record linkage using hidden Markov models. *BMC Medical Informatics and Decision Making*, 2(9). Retrieved May 18, 2011, from http://www.biomedcentral.com/1472-6947/2/9.
- CiteSeer^X. (2011). *About CiteSeer^X*. Retrieved May 18, 2011, from http://citeseer.ist.psu.edu/about/site

- Culotta, A., Kanani, P., Hall, R., Wick, M., & McCallum, A. (2007). Author disambiguation using error-driven machine learning with a ranking loss function. *Proceedings of the AAAI 6th International Workshop on Information Integration*, 32-37.
- Digital Author Identifier (DAI). (2010). *DAI-Standard wiki*. Retrieved May 18, 2011, from http://www.surffoundation.nl/wiki/display/standards/DAI
- DiLauro, T., Choudhury, G. S., Patton, M., Warner, J. W., & Brown, E. W. (2001). Automated name authority control and enhanced searching in the levy collection. *D-Lib Magazine*, 7(4). Retrieved May 18, 2011, from http://www.dlib.org/dlib/april01/dilauro/04dilauro.html
- Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate record detection: A survey. *TKDE*, *19*(1), 1-16.
- French, J. C., Powell, A., & Schulman, E. (2000). Using clustering strategies for creating authority files. *Journal of the American Society for Information Science*, *51*(8), 774-786.
- Han, H., Giles, L., Zha, H., Li, C., & Tsioutsiouliklis, K. (2004). Two supervised learning approaches for name disambiguation in author citations. *Proceedings of the 4th ACM/ IEEE-CS Joint Conference*, 296-305. Retrieved May 18, 2011, from http://clgiles.ist.psu. edu/papers/JCDL-2004-author-disambiguation.pdf
- Han, H., Giles, L., Zha, H., & Xu, W. (2005a). A hierarchical Naïve Bayes mixture model for name disambiguation in author citations. *Proceedings of the 2005 ACM symposium on Applied computing*, 1065-1069. Retrieved May 18, 2011, from http://clgiles.ist.psu.edu/papers/SAC-2005-Naïve-Bayes-Mixture.pdf
- Han, H., Giles, L., & Zha, H., (2005b). Name disambiguation in author citations using a K-way spectral clustering method. *Proceedings of ACM/IEEE Joint Conference on Digital Libraries*, 334-343. Retrieved May 18, 2011, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9354&rep=rep1&type=pdf
- Hernandez, M. A., & Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing and the merge/purge problem. *Data Mining and Knowledge Discovery*, 2(1), 9-37.
- Hill, S., & Provost, F. (2003). The myth of the double-blind review? Author identification using only citations. *SIGKDD Explorations*, *5*(2), 179-184.
- Huang, J., Ertekin., S., & Giles, C. L. (2006). Efficient name disambiguation for large scale databases.
 In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, 536-544.
- International Standard Name Identifier (ISNI). (2010). *International Standard Name Identifier Draft ISO* 27729. Retrieved May 18, 2011, from http://www.isni.org/
- Jaro, M. A. (1995). Probabilistic linkage of large public health data files. *Statistics in Medicine*, 14(5-7), 491-498.
- Kanani, P., McCallum, A., & Pal, C. (2007). Improving author coreference by resource bounded information gathering from the web. In M. M. Veloso (Ed.), *Proceedings of the 20th International Joint Conference on Artificial Intelligence*, 429-434.
- Koppel, M., Argamon, S., & Shimoni, A. (2002). Automatically categorizing written texts by author gender. *Literary and Linguistic Computing*, 17(4), 401-412.
- Lu, C., Xu, Y., & Geva, S. (2008). Web-Based Query Translation for English-Chinese CLIR. *Computational Linguistics and Chinese Language Processing*, 13(1), 61-90.

- Malin, B., Airoldi, E., & Carley, K. M. (2005). A network analysis model for disambiguation of names in lists. *Computational and Mathematical Organization Theory*, 11(2), 119-139.
- Mitchell, T. M. (1997). Machine Learning. New York: McGraw Hill.
- Online Computer Library Center (OCLC). (2010). WorldCat Identity Service. Retrieved from http://orlabs.oclc.org/identities
- People Australia. (2010). *People Australia Overview*. Retrieved May 18, 2011, from http://www.nla.gov.au/initiatives/peopleaustralia/index.html
- Pereira, D. A., Ribeiro-Neto, B. A., Ziviani, N., Laender, A. H. F., Gonçalves, M. A., & Ferreira, A. A. (2009). Using web information for author name disambiguation. *Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries*, 49-58.
- ProQuest. (2010). Scholar Universe. Retrieved May 18, 2011, from http://www_scholaruniverse_com
- Research Name Resolver. (2010). *NII Research Name Resolver*. Retrieved May 18, 2011, from http://rns.nii.ac.jp/;jsessionid=372CE9C69AF0745A1597C34DD3ACC420
- Smalheiser, N. R., & Torvik, V. I. (2009). Author Name Disambiguation. *Annual Review of Information Science and Technology*, 43(1), 1-43.
- Song, Y., Huang, J., Councill, I. G., Li, J., & Giles, C. L. (2007). Efficient topic-based unsupervised name disambiguation. In E. M. Rasmussen, R. R. Larson, E. Toms, & S. Sugimoto (Eds.), Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, 342-351.
- Tan, Y. F., Kan, M. Y., & Lee, D. (2006). Search engine driven author disambiguation. In G. Marchionini, M. L. Nelson, & C. C. Marshall (Eds.), *Proceedings of the ACM/IEEE Joint Conference on Digital Libraries*, 314-315.
- Thomson Reuters. (2010). *Distinct Author Identification System*. Retrieved May 18, 2011, from http://scientific.thomsonreuters.com/support/faq/wok3new/dais/
- Thomson Routers. (2011). *Journal Citation Reports*. Retrieved May 18, 2011, from http://www.isiwebofknowledge.com/
- Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. *ACM Transactions on Knowledge Discovery* from Data, 3(3), 1-29.
- Torvik, V. I., Weeber, M., Swanson, D. R., & Smalheiser, N. R. (2005). A probabilistic similarity metric for Medline records: A model for author name disambiguation. *Journal of the American Society for Information Science and Technology*, 56(2), 140-158.
- Wiley_Blackwell. (2010). *Author Service*. Retrieved May 18, 2011, from http://authorservices. wiley.com/bauthor/
- Winkler, W. E. (1995). Matching and record linkage. In B. G. Cox, D. A. Binder, B. N. Chinnappa, A. Christianson, M. J. College, & P. S. Kott (ed.), *Business Survey Methods* (pp.355-384). New York: J. Wiley.
- Yang, K. H., Jiang, J. Y., Lee, H. M., & Ho, J. M. (2007). Extracting citation relationships from web documents for author disambiguation. Retrieved May 18, 2011, from http://www.iis. sinica.edu.tw/page/library/TechReport/tr2006/tr06017.pdf
- Yang, K. H., Peng, H. T., Jiang, J. Y., Lee, H. M., & Ho, J. M. (2008). Author Name Disambiguation for Citations Using Topic and Web Correlation. *Proceedings of the 12th European conference on Research and Advanced Technology for Digital Libraries*, 185-196. Retrieved May 18, 2011, from http://www.iis.sinica.edu.tw/papers/hoho/7642-F.pdf

Appendix Performance of 14 author name datasets measured in accuracy (%).

A. Gupta (572 bibliographic records, 26 distinct authors)											
	V .		зиріа (372 biblic			20 disti			V/M	
		neans	11.0	Naïve Bayes			SVM				
CV	12.7	CT CTY	11.8	C	36.5	CTV	35.8	C	75.4	CTV	78.4
CY CP	18.7 20.4	CTP	18.3 20.2	CY CP	33.0 36.6	CTY CTP	36.3 36.2	CY CP	76.5 73.2	CTY CTP	78.3 76.7
CYP	21.3	CTYP	20.2	CYP	37.0	CTYP	34.7	CYP	72.4	CTYP	70.7 77.4
T	11.8	TJ	23.7	T	35.2	TJ	38.6	T	67.6	TJ	71.2
TY	18.3	TJY	23.7	TY	33.6	TJY	37.1	TY	67.6	TJY	73.6
TP	20.2	TJP	20.2	TP	33.7	TJP	37.7	TP	65.5	TJP	72.9
TYP	21.1	TJYP	22.0	TYP	34.8	TJYP	37.6	TYP	66.6	ТЈҮР	73.8
J	25.3	CJ	18.7	J	42.9	CJ	40.0	J	57.8	CJ	76.7
JY	22.9	CJY	20.8	JY	43.8	CJY	42.0	JY	61.3	CJY	78.1
JР	24.6	CJP	20.3	JP	41.7	CJP	41.1	JP	56.3	CJP	74.3
JYP	23.7	СЈҮР	22.2	JYP	44.1	СЈҮР	42.0	JYP	59.8	СЈҮР	77.3
CTJ	19.9	CTJP	20.2	СТЈ	37.7	СТЈР	38.2	CTJ	78.4	СТЈР	78.0
СТЈҮ	23.7	СТЈҮР	22.0	СТЈҮ	38.8	CTJYP	38.0	СТЈҮ	79.0	СТЈҮР	77.6
CIJI	23.1									CIJII	
A. Kumar (238 bibliographic records, 14 distinct authors) K-means Naïve Bayes SVM											
$\overline{\mathbf{C}}$	17.6	CT	17.6	C	41.9	CT	42.9	C	64.0	CT	71.4
CY	26.8	CTY	27.7	CY	44.3	CTY	42.9	CY	62.6	CTY	69.5
CP	32.3	CTP	31.0	CP	43.6	CTP		CP	66.1	CTP	69.4
CYP	24.3	CTYP	28.1	CYP	45.0	CTYP	42.8 45.4	CYP	64.2	CTYP	70.6
T	17.2	TJ	22.2	Т	42.5	TJ	46.9	T	69.6	TJ	73.4
TY	27.7	TJY	27.7	TY	43.2	TJY	45.8	TY	69.2	TJY	76.6
TP	31.0	TJP	30.6	TP	44.1	TJP	46.0	TP	68.0	TJP	76.7
TYP	28.1	туг ТЈҮР	28.5	TYP	45.0	TJYP	47.5	TYP	68.8	TJYP	76.1
J	26.4	CJ	28.1	J	51.0	CJ	48.4	J	70.4	CJ	77.8
JY	26.8	CJY	27.3	JY	52.4	CJY	48.3	JY	65.2	CJY	73.6
JP	31.5	CJP	31.0	JP	51.4	CJP	48.3	JP	64.6	CJP	74.8
JYP	28.9	СЈҮР	28.5	JYP	51.2	СЈҮР	46.9	JYP	64.6	СЈҮР	75.7
CTJ	20.5	СТЈР	30.6	СТЈ	45.3	СТЈР	44.8	CTJ	76.5	СТЈР	75.2
СТЈҮ	27.7	СТЈҮР	28.5	СТЈҮ	45.6	СТЈҮР	45.0	СТЈҮ	76.0	СТЈҮР	76.6
<u> </u>						c records,				CIGII	70.0
	K-r	neans	(e Bayes				VM	
$\overline{\mathbf{C}}$	12.5	CT	10.8	C	17.4	CT	15.5	C	65.7	CT	60.1
CY	15.7	CTY	12.2	CY	17.4	CTY	14.9	CY	64.8	CTY	62.9
CP	17.2	CTP	12.2	CP	17.7	CTP	15.2	CP	62.8	CTP	62.1
CYP	14.5	СТҮР	12.9	CYP	18.2	СТҮР	14.8	СҮР	60.9	СТҮР	63.3
T	12.6	TJ	16.6	T	13.6	TJ	16.5	T	53.7		58.4
TY	12.0	TJY	15.7	TY	15.0	TJY	18.3	TY	51.6	TJY	60.0
TP	11.1	TJP	15.6	TP	14.0	TJP	17.5	TP	52.0	TJP	57.8
TYP	13.8	ТЈҮР	14.4	TYP	16.1	ТЈҮР	17.2	TYP	51.7	ТЈҮР	58.9
J	23.7	CJ	17.5	J	23.5	CJ	22.6	J	43.7	CJ	66.7
JY	16.9	CJY	15.0	JY	26.3	CJY	23.9	JY	43.9		66.7
JP	19.7	CJP	15.1	JР	24.3	CJP	22.4	JP	41.5	CJP	65.3
JYP	17.0	СЈҮР	13.5	JYP	25.9	CJYP	23.4	JYP	43.9		66.7
CTJ	15.1	CTJP	14.2	CTJ	16.3	СТЈР	18.1	CTJ	64.6	СТЈР	65.4
CTJY	15.1	СТЈҮР	15.3	CTJY	17.9	CTJYP	18.3	CTJY	65.5	CTJYP	64.2
CIJI	13.1	CIJIP	13.3	CIJI	1/.7	CIJIP	10.5	CIJI	05.5	CIJIP	UT.2

D. Johnson (347 bibliographic records, 15 distinct authors)

						_					
	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	31.7	CT	15.5	C	50.9	CT	50.9	C	73.9	CT	76.2
CY	32.2	CTY	31.7	CY	52.4	CTY	51.0	CY	76.9	CTY	77.3
CP	27.0	CTP	32.5	CP	51.2	CTP	51.0	CP	71.5	CTP	76.1
CYP	25.9	CTYP	26.5	CYP	51.6	CTYP	50.7	CYP	72.7	CTYP	78.5
T	15.5	TJ	29.9	T	51.2	TJ	51.3	Т	70.7	TJ	75.4
TY	31.4	TJY	29.6	TY	49.8	TJY	50.7	TY	73.5	TJY	77.3
TP	32.5	TJP	32.2	TP	51.3	TJP	50.1	TP	72.6	TJP	75.8
TYP	29.1	TJYP	26.8	TYP	50.5	TJYP	51.3	TYP	74.4	TJYP	77.7
J	32.5	CJ	25.3	J	52.0	CJ	51.1	J	69.0	CJ	80.9
JY	34.8	CJY	30.8	JY	52.7	CJY	51.0	JY	67.9	CJY	79.5
JP	36.3	CJP	33.1	JP	52.3	CJP	49.8	JP	66.4	CJP	79.5
JYP	27.0	CJYP	26.5	JYP	54.6	CJYP	50.9	JYP	69.1	CJYP	79.7
CTJ	29.9	CTJP	32.8	CTJ	50.9	CTJP	50.7	CTJ	77.6	CTJP	78.7
CTJY	29.6	CTJYP	26.8	CTJY	50.4	CTJYP	49.8	CTJY	80.5	CTJYP	77.3

J. Lee (1270 bibliographic records, 99 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	0.5	CT	0.2	С	12.5	CT	11.5	С	68.1	CT	70.4
CY	9.6	CTY	10.5	CY	11.9	CTY	9.3	CY	67.5	CTY	69.5
CP	11.6	CTP	11.2	CP	12.3	CTP	11.1	CP	64.6	CTP	69.3
CYP	11	CTYP	11.8	CYP	11.7	CTYP	11.4	CYP	63.7	CTYP	69.1
T	0.2	TJ	16.9	T	10.7	TJ	14.9	T	59	TJ	65.2
TY	9.7	TJY	15.9	TY	10.7	TJY	14.2	TY	60.5	TJY	65.1
TP	10.7	TJP	14	TP	11.5	TJP	12.5	TP	59.2	TJP	64.1
TYP	11.6	TJYP	11.4	TYP	10.8	TJYP	14.3	TYP	59.2	TJYP	63.5
J	18.3	CJ	16.8	J	18.6	CJ	16.1	J	47.6	CJ	69
JY	15.5	CJY	15.5	JY	18.7	CJY	16.8	JY	47.5	CJY	70.3
JP	16.4	CJP	12.9	JP	19.3	CJP	13	JP	46.3	CJP	69.7
JYP	13.3	CJYP	12.5	JYP	18.7	CJYP	16.3	JYP	45.8	CJYP	70
CTJ	16.2	CTJP	14.4	CTJ	13.6	CTJP	13.8	CTJ	73.2	CTJP	72.1
CTJY	14.8	CTJYP	12	CTJY	14.4	CTJYP	14.1	CTJY	72.5	CTJYP	72.2

J. Martin (103 bibliographic records, 15 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	36.8	CT	21.3	С	15.9	CT	27.9	С	50.5	CT	47.4
CY	40.7	CTY	29.1	CY	28.3	CTY	32.6	CY	49.3	CTY	50.5
CP	36.8	CTP	23.3	CP	24.3	CTP	27.1	CP	43.0	CTP	48.0
CYP	32.0	CTYP	27.1	CYP	27.0	CTYP	21.8	CYP	45.2	CTYP	54.7
T	10.6	TJ	35.9	T	17.2	TJ	37.1	T	42.8	TJ	60.9
TY	26.2	TJY	30.9	TY	29.1	TJY	37.3	TY	49.0	TJY	62.7
TP	21.3	TJP	23.3	TP	22.9	TJP	36.3	TP	42.6	TJP _	58.6
TYP	27.1	TJYP	32.0	TYP	22.2	TJYP	44.4	TYP	46.1	TJYP	66.1
J	44.6	CJ	36.8	J	47.0	CJ	40.5	J	56.3	CJ	62.3
JY	39.8	CJY	33.0	JY	45.3	CJY	40.4	JY	61.3	CJY —	65.6
JP	33.9	CJP	30.0	JP	45.3	CJP	44.1	JP	50.7	CJP -	61.7
JYP	37.8	CJYP	37.8	JYP	46.0	CJYP	41.6	JYP	54.9	CJYP	61.3
CTJ	36.8	CTJP	28.1	CTJ	38.8	CTJP	34.8	CTJ	60.1	CTJP	62.6
CTJY	31.0	CTJYP	34.9	CTJY	37.0	CTJYP	38.6	CTJY	62.8	CTJYP	68.3

J. Robinson (168 bibliographic records, 12 distinct authority)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	41	CT	25	С	40.9	CT	34.4	С	69.0	CT	73.5
CY	33.3	CTY	26.7	CY	41.6	CTY	32.3	CY	65.8	CTY	75.3
CP	30.9	CTP	26.1	CP	40.2	CTP	32.4	CP	64.3	CTP	68.4
CYP	33.9	CTYP	30.3	CYP	43.9	CTYP	32.3	CYP	63.4	CTYP	75.2
T	14.2	TJ	24.4	T	33.0	TJ	37.7	T	55.5	TJ	68.5
TY	26.7	TJY	30.3	TY	33.9	TJY	38.7	TY	58.2	TJY	70.9
TP	24.4	TJP	29.1	TP	33.1	TJP	38.3	TP	58.1	TJP	68.7
TYP	30.3	TJYP	30.3	TYP	33.3	TJYP	42.2	TYP	60.3	TJYP	72.2
J	26.7	CJ	27.3	J	44.3	CJ	43.5	J	66.9	CJ	73.6
JY	30.9	CJY	29.1	JY	47.0	CJY	44.1	JY	62.5	CJY	72.0
JP	29.1	CJP	29.7	JP	47.2	CJP	45.0	JP	60.8	CJP	74.3
JYP	30.3	CJYP	35.1	JYP	47.3	CJYP	45.5	JYP	64.4	CJYP	72.0
CTJ	30.3	CTJP	30.3	CTJ	35.4	CTJP	37.6	CTJ	73.4	CTJP	76.3
CTJY	32.7	CTJYP	32.1	CTJY	37.6	CTJYP	40.7	CTJY	77.0	CTJYP	75.9

J. Smith (872 bibliographic records, 29 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{c}}$	15.3	CT	14.1	С	61.3	CT	54.3	C	80.2	CT	85.2
CY	31.9	CTY	25.1	CY	63.8	CTY	56.1	CY	77.3	CTY	84.8
CP	29.0	CTP	24.4	CP	61.9	CTP	55.9	CP	77.7	CTP	85.2
CYP	21.7	CTYP	20.1	CYP	64.7	CTYP	56.0	CYP	76.3	CTYP	85.7
T	14.1	TJ	17.6	T	42.2	TJ	61.3	T	74.4	TJ	83.2
TY	22.4	TJY	25.2	TY	45.4	TJY	62.5	TY	75.0	TJY	84.6
TP	24.4	TJP	23.6	TP	44.7	TJP	60.9	TP	72.4	TJP	83.0
TYP	19.6	TJYP	19.1	TYP	46.5	TJYP	61.5	TYP	74.4	TJYP	84.2
J	20.4	CJ	27.5	J	61.9	CJ	67.3	J	76.1	CJ	86.6
JY	21.5	CJY	24.3	JY	62.4	CJY	69.2	JY	76.4	CJY	85.8
JP	22.7	CJP	21.1	JP	63.0	CJP	67.5	JP	75.7	CJP	85.4
JYP	18.0	CJYP	19.6	JYP	62.5	CJYP	69.1	JYP	78.0	CJYP	85.6
CTJ	20.9	CTJP	23.3	CTJ	64.3	CTJP	64.2	CTJ	89.3	CTJP	88.4
CTJY	24.6	CTJYP	19.4	CTJY	63.7	CTJYP	65.7	CTJY	88.3	CTJYP	88.6

K. Tanaka (267 bibliographic records, 10 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{c}}$	18.1	CT	18.4	C	61.8	CT	60.0	C	83.4	CT	83.8
CY	34.7	CTY	35.8	CY	63.6	CTY	61.1	CY	82.4	CTY	86.4
CP	28.2	CTP	30.4	CP	60.9	CTP	59.7	CP	81.2	CTP	85.1
CYP	29.3	CTYP	23.5	CYP	63.5	CTYP	61.2	CYP	80.3	CTYP	84.8
T	18.4	TJ	21.3	Т	54.8	TJ	62.5	T	78.5	TJ	84.6
TY	34.0	TJY	26.4	TY	58.6	TJY	65.0	TY	80.0	TJY	87.6
TP	30.4	TJP	30.4	TP	57.0	TJP	62.5	TP	77.7	TJP	84.4
TYP	29.3	TJYP	25.7	TYP	55.1	TJYP	63.4	TYP	80.8	TJYP	86.1
J	23.1	CJ	20.6	J	65.4	CJ	68.9	J	75.4	CJ	87.0
JY	28.9	CJY	28.6	JY	65.1	CJY	68.0	JY	74.4	CJY	89.5
JP	30.7	CJP	29.7	JP	65.2	CJP	69.3	JP 🙎	73.9	CJP	88.3
JYP	27.8	CJYP	25.3	JYP	66.3	CJYP	66.4	JYP	75.6	CJYP	86.5
CTJ	23.5	CTJP	31.1	CTJ	62.2	CTJP	65.8	CTJ	90.4	CTJP	87.1
CTJY	26.0	CTJYP	26.8	CTJY	64.1	CTJYP	63.6	CTJY	89.3	CTJYP	87.4

Lerain S.

M. Brown (146 bibliographic records, 13 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	30.1	CT	19.1	С	51.4	CT	38.3	C	72.5	CT	69.0
CY	37.6	CTY	36.9	CY	51.2	CTY	38.2	CY	71.7	CTY	72.3
CP	24.6	CTP	21.2	CP	45.9	CTP	38.0	CP	72.0	CTP	72.1
CYP	35.6	CTYP	39.7	CYP	48.3	CTYP	38.0	CYP	68.2	CTYP	72.6
T	15.0	TJ	23.2	T	30.8	TJ	36.0	T	66.0	TJ	67.8
TY	36.3	TJY	36.3	TY	34.0	TJY	40.2	TY	70.5	TJY	73.3
TP	21.2	TJP	25.3	TP	33.2	TJP	36.8	TP	66.8	TJP	70.6
TYP	39.7	TJYP	39.7	TYP	33.7	TJYP	40.8	TYP	63.8	TJYP	70.4
J	27.3	CJ	28.0	J	41.4	CJ	42.9	J	63.7	CJ	71.4
JY	36.9	CJY	36.3	JY	40.3	CJY	43.9	JY	60.6	CJY	71.7
JP	23.2	CJP	22.6	JP	42.8	CJP	49.0	JP	59.4	CJP	70.1
JYP	26.3	CJYP	39.7	JYP	48.1	CJYP	46.6	JYP	64.9	CJYP	76.2
CTJ	18.4	CTJP	24.6	CTJ	33.6	CTJP	46.5	CTJ	76.9	CTJP	76.2
CTJY	36.3	CTJYP	39.7	CTJY	45.3	CTJYP	43.1	CTJY	75.9	CTJYP	73.2

M. Jones (247 bibliographic records, 13 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{c}}$	38.0	CT	19.8	С	39.1	CT	44.6	С	60.1	CT	71.4
CY	37.6	CTY	26.3	CY	43.6	CTY	45.9	CY	60.7	CTY	69.5
CP	24.2	CTP	19.0	CP	46.7	CTP	48.3	CP	57.2	CTP	72.3
CYP	24.2	CTYP	21.4	CYP	46.1	CTYP	47.6	CYP	55.7	CTYP	71.6
T	15.7	TJ	22.6	T	45.1	TJ	54.2	T	65.0	TJ	79.8
TY	22.6	TJY	24.6	TY	47.6	TJY	51.1	TY	65.7	TJY	78.3
TP	19.4	TJP	21.0	TP	41.6	TJP	54.3	TP	65.3	TJP	79.3
TYP	23.4	TJYP	27.5	TYP	45.1	TJYP	53.9	TYP	66.2	TJYP	77.5
J	19.8	CJ	19.4	J	56.8	CJ	58.7	J	74.6	CJ	77.3
JY	26.3	CJY	25.1	JY	58.8	CJY	55.3	JY	74.3	CJY	77.9
JP	21.0	CJP	22.6	JP	58.8	CJP	54.8	JP	70.7	CJP	78.2
JYP	24.2	CJYP	24.2	JYP	57.1	CJYP	58.9	JYP	7.04	CJYP	78.8
CTJ	24.2	CTJP	21.4	CTJ	55.4	CTJP	55.6	CTJ	80.1	CTJP	81.5
CTJY	24.6	CTJYP	27.5	CTJY	55.5	CTJYP	54.6	CTJY	77.9	CTJYP	80.2

M. Miller (384 bibliographic records, 12 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	18.4	CT	18.4	С	75.7	CT	66.7	C	84.4	CT	88.1
CY	43.4	CTY	42.9	CY	76.4	CTY	69.8	CY	85.8	CTY	86.6
CP	28.1	CTP	28.6	CP	75.8	CTP	68.3	CP	83.5	CTP	89.8
CYP	35.6	CTYP	35.6	CYP	77.5	CTYP	68.7	CYP	81.8	CTYP	88.7
T	18.4	TJ	18.4	T	58.8	TJ	61.4	Т	84.9	TJ	85.8
TY	42.9	TJY	42.9	TY	58.0	TJY	60.7	TY	84.1	TJY	88.4
TP	28.6	TJP	25.7	TP	60.9	TJP	63.7	TP	85.0	TJP _	87.8
TYP	35.6	TJYP	35.6	TYP	59.9	TJYP	62.1	TYP	84.6	TJYP	88.6
J	18.7	CJ	18.4	J	74.4	CJ	78.8	J	87.4	CJ	91.1
JY	44.7	CJY	42.9	JY	72.9	CJY	79.8	JY	87.0	CJY	90.7
JP	26.0	CJP	26.5	JP	74.6	CJP	79.2	JP	84.5	CJP -	89.9
JYP	38.0	CJYP	35.6	JYP	74.3	CJYP	79.3	JYP	87.6	CJYP	90.2
CTJ	18.4	CTJP	25.7	CTJ	72.5	CTJP	67.5	CTJ	89.9	CTJP	91.1
CTJY	42.9	CTJYP	35.6	CTJY	67.0	CTJYP	69.0	CTJY	88.6	CTJYP	89.9

S. Lee (1260 bibliographic records, 84 distinct authors)

	K-ı	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{c}}$	4.7	CT	1.4	С	15.2	CT	14.9	С	69.5	CT	67.8
CY	8.2	CTY	13.6	CY	15.6	CTY	15.0	CY	68.6	CTY	66.6
CP	14.1	CTP	12.7	CP	15.2	CTP	14.9	CP	66.9	CTP	64.9
CYP	15.3	CTYP	14.5	CYP	15.5	CTYP	15.1	CYP	66.3	CTYP	67.1
T	1.4	TJ	17.6	T	14.7	TJ	17.0	T	58.9	TJ	67.2
TY	12.9	TJY	16.7	TY	14.8	TJY	17.1	TY	59.2	TJY	66.5
TP	11.5	TJP	15.7	TP	14.9	TJP	17.4	TP	58.5	TJP	67.0
TYP	14.6	TJYP	15.6	TYP	14.8	TJYP	17.0	TYP	58.9	TJYP	66.8
J	26.5	CJ	18.6	J	26.1	CJ	18.7	J	53.3	CJ	74.0
JY	19.7	CJY	15.5	JY	26.8	CJY	19.0	JY	55.1	CJY	72.4
JP	18.4	CJP	16.5	JP	26.5	CJP	18.8	JP	53.3	CJP	72.7
JYP	18.9	CJYP	16.5	JYP	27.2	CJYP	18.6	JYP	55.7	CJYP	73.2
CTJ	17.1	CTJP	15.0	CTJ	15.9	CTJP	16.2	CTJ	71.5	CTJP	72.0
CTJY	16.3	CTJYP	14.2	CTJY	15.8	CTJYP	16.0	CTJY	70.6	CTJYP	72.4

Y. Chen (1168 bibliographic records, 71 distinct authors)

	K-r	neans			Naïv	e Bayes			S	VM	
$\overline{\mathbf{C}}$	0.7	CT	0.5	С	23.2	CT	22.2	C	70.8	CT	68.6
CY	19.9	CTY	16.1	CY	23.9	CTY	22.6	CY	69.3	CTY	70.4
CP	17.2	CTP	15.7	CP	23.8	CTP	22.2	CP	65.4	CTP	70.2
CYP	18.1	CTYP	16.5	CYP	24.8	CTYP	22.3	CYP	67.3	CTYP	72.4
T	0.5	TJ	12.5	T	21.8	TJ	26.6	T	62.6	TJ	68.0
TY	16.8	TJY	17.8	TY	22.1	TJY	27.0	TY	64.8	TJY	70.4
TP	15.0	TJP	12.1	TP	22.6	TJP	27.1	TP	63.6	TJP	67.8
TYP	16.0	TJYP	14.5	TYP	22.9	TJYP	27.2	TYP	64.0	TJYP	68.4
J	16.4	CJ	14.8	J	30.9	CJ	27.7	J	53.0	CJ	72.7
JY	18.6	CJY	17.2	JY	31.1	CJY	28.0	JY	55.4	CJY	74.6
JP	15.1	CJP	12.0	JP	31.5	CJP	28.3	JP	52.1	CJP	72.8
JYP	15.7	CJYP	14.1	JYP	31.8	CJYP	29.0	JYP	54.0	CJYP	74.0
CTJ	15.6	CTJP	13.8	CTJ	25.9	CTJP	26.3	CTJ	71.8	CTJP	72.6
CTJY	18.7	CTJYP	14.5	CTJY	26.2	CTJYP	25.9	CTJY	73.9	CTJYP	73.4

書目資料中著者姓名歧義性之解析學

陳光華*

教授

臺灣大學圖書資訊學系

E-mail: khchen@ntu.edu.tw

謝其男

研究生

臺灣大學圖書資訊學系

E-mail: r97126004@ntu.edu.tw

摘要

目前網際網路已經快速地累積大量的學術資訊,使用者經常會面 臨到著者歧異性的問題,使得對同名著者群的解析成為一項重要 的研究課題。相較於前人研究,本研究充分應用文獻書目資料僅 有的資訊,而不使用書目資訊以外的資訊。本研究探討「共同著者 姓名(C)」、「文獻題名(T)」、「期刊題名(J)」、「出版年(Y)」、「頁 數(P)」等五項特徵資訊,其中「出版年」與「頁數」從未有其他研 究使用過。本研究使用監督式學習方法(Naïve Bayes與SVM)與 非監督式分類方法(K-means),探討28項不同的特徵資訊組合。 研究發現「期刊題名(J)」與「共同作者(C)」是特別有效的特徵資 訊;J在三種方法皆有很好的表現,C則是在SVM方法有很好的效 用。「出版年(Y)」與「頁數(P)」在與其他特徵資訊的組合明顯地 提升歧義性解析的正確率,兩者以「出版年(Y)」的輔助效果較為突 出(平均提升2.5%)。在前人研究中經常被使用的特徵資訊組合「CTJ」 並不一定能取得最佳的正確率,而JYP、JY、CJ等特徵組合亦能達到 最佳的正確率。最後比較資料集的規模與複雜度的實驗結果發現, 規模較大複雜度較高的資料集的準確率低了10%,顯示當測試的資料 集日益龐雜時,完全倚靠書目資料難以提供令人滿意的辨識效果。 顯現在未來研究中,若要有效地解決人名歧異性之問題,除了充分 使用書目資料的各項特徵,仍須使用適當的外部資訊。

關鍵詞:著者歧義性,書目資料,機器學習

本文部分內容曾發表於《教育資料與圖書館學》40週年國際學術研討會,2011年 3月7-8日。

^{*} 本文主要作者兼通訊作者。